Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Dec 1;142(6):1455–1461. doi: 10.1084/jem.142.6.1455

Dominant nonresponsiveness in the induction of autoimmunity to liver- specific F antigen

PMCID: PMC2190062  PMID: 1194856

Abstract

The liver-specific F antigen, although not an autoimmunogen, can induce the production of autoantibodies in responder strains. The ability to respond is under the control of two genes, one linked to the H-2 locus of mice, the other not. Responders possessing both genes produce high anti-F titers, while the H-2-linked gene alone permits a significant but low antibody response. (Responder X nonresponder) F1 hybrids derived from parents possessing identical F molecules are nonresponders, in contrast with the dominance of responsiveness in Ir gene systems. The presence of the H-2 locus from nonresponders appears involved in the inability to respond. This is discussed in terms of self-tolerance and suppression.

Full Text

The Full Text of this article is available as a PDF (486.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  2. Cinader B., Koh S. W., Naylor D. Tolerance-mediated inheritance of immune responsiveness. Int Arch Allergy Appl Immunol. 1969;35(2):150–162. doi: 10.1159/000230168. [DOI] [PubMed] [Google Scholar]
  3. Fravi G., Lindenmann J. Induction by allogeneic extracts of liver-specific precipitating autoantibodies in the mouse. Nature. 1968 Apr 13;218(5137):141–143. doi: 10.1038/218141a0. [DOI] [PubMed] [Google Scholar]
  4. Gershon R. K. T cell control of antibody production. Contemp Top Immunobiol. 1974;3:1–40. doi: 10.1007/978-1-4684-3045-5_1. [DOI] [PubMed] [Google Scholar]
  5. Howard J. G., Mitchison N. A. Immunological tolerance. Prog Allergy. 1975;18:43–96. doi: 10.1159/000395256. [DOI] [PubMed] [Google Scholar]
  6. Hunter R. Standardization of the chloramine-T method of protein iodination. Proc Soc Exp Biol Med. 1970 Mar;133(3):989–992. doi: 10.3181/00379727-133-34611. [DOI] [PubMed] [Google Scholar]
  7. Iverson G. M., Lindenmann J. The role of a carrier-determinant and T cells in the induction of liver-specific autoantibodies in the mouse. Eur J Immunol. 1972 Jun;2(3):195–197. doi: 10.1002/eji.1830020302. [DOI] [PubMed] [Google Scholar]
  8. Katz D. H., Graves M., Dorf M. E., Dimuzio H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VII. Cooperative responses between lymphocytes are controlled by genes in the I region of the H-2 complex. J Exp Med. 1975 Jan 1;141(1):263–268. doi: 10.1084/jem.141.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shreffler D. C., David C. S. The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol. 1975;20:125–195. doi: 10.1016/s0065-2776(08)60208-4. [DOI] [PubMed] [Google Scholar]
  10. Tada T., Okumura K., Taniguchi M. Regulation of homocytotropic antibody formation in the rat. 8. An antigen-specific T cell factor that regulates anti-hapten homocytotropic antibody response. J Immunol. 1973 Sep;111(3):952–961. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES