Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Dec 1;142(6):1509–1519. doi: 10.1084/jem.142.6.1509

A mechanism for the induction of immunological tolerance by antigen feeding: antigen-antibody complexes

PMCID: PMC2190065  PMID: 1104748

Abstract

We have previously reported on the induction, in mice, of a systemic (splenic) immune response with IgA as the dominant antibody, as a result of a short (4 day) intragastric immunization course with foreign erythrocytes. This response was followed by a prolonged period of hyporesponsiveness to similarly administered antigen. Here it is shown that this hyporesponsiveness is also manifested towards antigen given intraperitoneally, and that one is therefore dealing with tolerance, not with failure to absorb antigen from the gut. In contrast, mice primed parenterally and then challenged intragastrically behaved as if never having any previous contact with the antigen, i.e., with a primary-type splenic response of predominant IgA character. This agrees with our former conclusion that splenic responses to enterically absorbed antigen reflect colonization of the spleen by cells sensitized locally in the gut wall, a site not readily primed by the parenteral route. Serum from intragastrically immunized mice contained a very active tolerogen. In vivo, it was capable of conferring tolerance to nonimmune recipient mice. In vitro, it paralyzed the activity of antibody-producing cells. Inhibitory sera has weak antibody activity, restricted to the IgA class, and contained immune complexes reacting with rheumatoid factor but not with C1q. Elimination of these complexes by means by insolubilized rheumatoid factor abolished the tolerogenic effect. In conclusion, the enterically induced tolerogen seems to consist of immune complexes with IgA as the antibody.

Full Text

The Full Text of this article is available as a PDF (711.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Parish C. R. Low zone tolerance to bacterial flagellin in adult rats: a possible role for antigen localized in lymphoid follicles. Proc Natl Acad Sci U S A. 1968 Oct;61(2):556–561. doi: 10.1073/pnas.61.2.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. André C., Bazin H., Heremans J. F. Influence of repeated administration of antigen by the oral route on specific antibody-producing cells in the mouse spleen. Digestion. 1973;9(2):166–175. doi: 10.1159/000197442. [DOI] [PubMed] [Google Scholar]
  3. André C., Lambert R., Bazin H., Heremans J. F. Interference of oral immunization with the intestinal absorption of heterologous albumin. Eur J Immunol. 1974 Oct;4(10):701–704. doi: 10.1002/eji.1830041013. [DOI] [PubMed] [Google Scholar]
  4. Auerbach R., Roethle J. Tolerance to heterologous erythrocytes. Science. 1974 Jan 25;183(4122):332–334. doi: 10.1126/science.183.4122.332. [DOI] [PubMed] [Google Scholar]
  5. BATTISTO J. R., MILLER J. Immunological unresponsiveness produced in adult guinea pigs by parenteral introduction of minute quantities of hapten or protein antigen. Proc Soc Exp Biol Med. 1962 Oct;111:111–115. doi: 10.3181/00379727-111-27717. [DOI] [PubMed] [Google Scholar]
  6. BIRO C. E., GARCIA G. THE ANTIGENICITY OF AGGREGATED AND AGGREGATE-FREE HUMAN GAMMA-GLOBULIN FOR RABBITS. Immunology. 1965 Apr;8:411–419. [PMC free article] [PubMed] [Google Scholar]
  7. Cantor H. M., Dumont A. E. Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature. 1967 Aug 12;215(5102):744–745. doi: 10.1038/215744a0. [DOI] [PubMed] [Google Scholar]
  8. Crabbé P. A., Nash D. R., Bazin H., Eyssen D. V., Heremans J. F. Antibodies of the IgA type in intestinal plasma cells of germfree mice after oral or parenteral immunization with ferritin. J Exp Med. 1969 Oct 1;130(4):723–744. doi: 10.1084/jem.130.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dive C., Nadalini R. A., Vaerman J. P., Heremans J. F. Origin and nature of the proteins of bile. II. A comparative analysis of serum, hepatic lymph and bile proteins in the dog. Eur J Clin Invest. 1974 Aug;4(4):241–246. doi: 10.1111/j.1365-2362.1974.tb00399.x. [DOI] [PubMed] [Google Scholar]
  10. MITCHISON N. A. INDUCTION OF IMMUNOLOGICAL PARALYSIS IN TWO ZONES OF DOSAGE. Proc R Soc Lond B Biol Sci. 1964 Dec 15;161:275–292. doi: 10.1098/rspb.1964.0093. [DOI] [PubMed] [Google Scholar]
  11. Mayer D. J., Kronman B., Dumont A. E. Enhancement of skin homografts by active immunization. Surg Forum. 1965;16:243–245. [PubMed] [Google Scholar]
  12. Schrader J. W., Nossal G. J. Effector cell blockade. A new mechanism of immune hyporeactivity induced by multivalent antigens. J Exp Med. 1974 Jun 1;139(6):1582–1598. doi: 10.1084/jem.139.6.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thomas H. C., Parrott M. V. The induction of tolerance to a soluble protein antigen by oral administration. Immunology. 1974 Oct;27(4):631–639. [PMC free article] [PubMed] [Google Scholar]
  14. Vaerman J. P., André C., Bazin H., Heremans J. F. Mesenteric lymph as a major source of serum IgA in guinea pigs and rats. Eur J Immunol. 1973 Sep;3(9):580–584. doi: 10.1002/eji.1830030911. [DOI] [PubMed] [Google Scholar]
  15. Vaerman J. P., Heremans J. F. Origin and molecular size of immunoglobulin-A in the mesenteric lymph of the dog. Immunology. 1970 Jan;18(1):27–38. [PMC free article] [PubMed] [Google Scholar]
  16. Walker W. A., Isselbacher K. J., Bloch K. J. Intestinal uptake of macromolecules. II. Effect of parenteral immunization. J Immunol. 1973 Jul;111(1):221–226. [PubMed] [Google Scholar]
  17. Walker W. A., Isselbacher K. J., Bloch K. J. Intestinal uptake of macromolecules: effect of oral immunization. Science. 1972 Aug 18;177(4049):608–610. doi: 10.1126/science.177.4049.608. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES