Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Dec 1;142(6):1391–1402. doi: 10.1084/jem.142.6.1391

Regulatory mechanisms in cell-mediated immune responses. II. A genetically restricted suppressor of mixed lymphocyte reactions released by alloantigen-activated spleen cells

PMCID: PMC2190068  PMID: 53264

Abstract

The mechanism of alloantigen-activated spleen cell suppression of mixed lymphocyte reaction (MLR) is explored in this report. Activated murine suppressor spleen cells elaborated a soluble noncytotoxic factor which suppressed MLR responses by 55-95%. Generation of suppressor factor required both in vivo alloantigen sensitization and specific in vitro restimulation. Suppressor factor was not produced by activated spleen cells which had been treated with anti-Thy-1.2 serum and complement. Antigenic specificity toward alloantigens of the stimulator cells was not demonstrable. In contrast, suppressor factor effectively inhibited MLR response only of responder cells of those strains that shared the D- end and the I-C subregion of the H-2 complex with the cells producing suppressor factor. Therefore, active suppression appears to require an MHC-directed homology relationship between regulating and responder cells in MLR.

Full Text

The Full Text of this article is available as a PDF (702.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armerding D., Katz D. H. Activation of T and B lymphocytes in vitro. II. Biological and biochemical properties of an allogeneic effect factor (AEF) active in triggering specific B lymphocytes. J Exp Med. 1974 Jul 1;140(1):19–37. doi: 10.1084/jem.140.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armerding D., Sachs D. H., Katz D. H. Activation of T and B lymphocytes in vitro. III. Presence of Ia determinants on allogeneic effect factor. J Exp Med. 1974 Dec 1;140(6):1717–1722. doi: 10.1084/jem.140.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calderon J., Williams R. T., Unanue E. R. An inhibitor of cell proliferation released by cultures of macrophages. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4273–4277. doi: 10.1073/pnas.71.11.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. David J. R. Mediators produced by sensitized lymphocytes. Fed Proc. 1971 Nov-Dec;30(6):1730–1735. [PubMed] [Google Scholar]
  5. Doherty P. C., Zinkernagel R. M. T-cell-mediated immunopathology in viral infections. Transplant Rev. 1974;19(0):89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  6. Dorf M. E., Katz D. H., Graves M., DiMuzio H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VIII. In vivo cooperative responses between lymphocytes are controlled by genes in the K-end of the H-2 complex. J Immunol. 1975 Jun;114(6):1717–1719. [PubMed] [Google Scholar]
  7. Katz D. H., Dorf M. E., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VI. Cooperative responses between lymphocytes derived from mouse donor strains differing at genes in the S and D regions of the H-2 complex. J Exp Med. 1974 Jul 1;140(1):290–295. doi: 10.1084/jem.140.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katz D. H., Graves M., Dorf M. E., Dimuzio H., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. VII. Cooperative responses between lymphocytes are controlled by genes in the I region of the H-2 complex. J Exp Med. 1975 Jan 1;141(1):263–268. doi: 10.1084/jem.141.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katz D. H., Hamaoka T., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J Exp Med. 1973 Jun 1;137(6):1405–1418. doi: 10.1084/jem.137.6.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kindred B., Shreffler D. C. H-2 dependence of co-operation between T and B cells in vivo. J Immunol. 1972 Nov;109(5):940–943. [PubMed] [Google Scholar]
  11. Munro A. J., Taussig M. J., Campbell R., Williams H., Lawson Y. Antigen-specific T-cell factor in cell cooperation: physical properties and mapping in the left-hand (K) half of H-2. J Exp Med. 1974 Dec 1;140(6):1579–1587. doi: 10.1084/jem.140.6.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. I. Regulation of mixed lymphocyte reactions by alloantigen-activated thymus-derived lymphocytes. J Exp Med. 1974 Dec 1;140(6):1588–1603. doi: 10.1084/jem.140.6.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shreffler D. C., David C. S. The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol. 1975;20:125–195. doi: 10.1016/s0065-2776(08)60208-4. [DOI] [PubMed] [Google Scholar]
  15. Taussig M. J. T cell factor which can replace T cells in vivo. Nature. 1974 Mar 15;248(445):234–236. doi: 10.1038/248234a0. [DOI] [PubMed] [Google Scholar]
  16. Thomas D. W., Roberts W. K., Talmage D. W. Regulation of the immune response: production of a soluble suppressor by immune spleen cells in vitro. J Immunol. 1975 May;114(5):1616–1622. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES