Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Dec 1;142(6):1447–1454. doi: 10.1084/jem.142.6.1447

Genetic control of specific immune suppression. II. H-2-linked dominant genetic control of immune suppression by the random copolymer L- glutamic acid50-L-tyrosine50 (GT)

PMCID: PMC2190080  PMID: 1194855

Abstract

Several inbred as well as congenic resistant strains of mice, which fail to respond to the random copolymer of L-glutamic acid50-L- tyrosine50 (GT), were shown to develop specific PFC responses when stimulated by GT complexed to an immunogenic carrier such as methylated bovine serum albumin (MBSA). In these studies we have found that GT preimmunization has a tolerogenic effect on the response to GT-MBSA in some mouse strains; whereas in other strains of mice, GT fails to inhibit the GT-MBSA response. We may, therefore, conclude that immune suppression cannot account for nonresponsiveness in all cases. The development of specific immune suppression in response to GT was shown to be inherited as a dominant trait in F1 hybrids resulting from the mating of suppressor with nonsuppressor strains. This trait is, therefore, under the control of a gene or genes that we have designated as specific immune suppression gene(s) Is genes. The strain distribution of GT induced suppression demonstrates that Is genes are coded for in the H-2 complex. Furthermore, immune suppression by the two related copolymers, GT and GAT, are distinct in different strains of mice. The significance of these data for our understanding of the regulation of the immune response is discussed.

Full Text

The Full Text of this article is available as a PDF (528.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  2. Debré P., Kapp J. A., Benacerraf B. Genetic control of specific immune suppression. I. Experimental conditions for the stimulation of suppressor cells by the copolymer L-glutamic acid50-L-tyrosine50 (GT) in nonresponder BALB/c mice. J Exp Med. 1975 Dec 1;142(6):1436–1446. doi: 10.1084/jem.142.6.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. 3. Tolerogenic properties of the terpolymer L-glutamic acid 60-L-alanine30-L-tyrosine10 (GAT) for spleen cells from nonresponder (H-2s and H-2q) mice. J Exp Med. 1974 Jul 1;140(1):172–184. doi: 10.1084/jem.140.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. I. Development of primary and secondary plaque-forming cell responses to the random terpolymer 1-glutamic acid 60-1-alanine30-1-tyrosine10 (GAT) by mouse spleen cells in vitro. J Exp Med. 1973 Nov 1;138(5):1107–1120. doi: 10.1084/jem.138.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kapp J. A., Pierce C. W., Schlossman S., Benacerraf B. Genetic control of immune responses in vitro. V. Stimulation of suppressor T cells in nonresponder mice by the terpolymer L-glutamic acid 60-L-alanine 30-L-tyrosine 10 (GAT). J Exp Med. 1974 Sep 1;140(3):648–659. doi: 10.1084/jem.140.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McDevitt H. O., Benacerraf B. Genetic control of specific immune responses. Adv Immunol. 1969;11:31–74. doi: 10.1016/s0065-2776(08)60477-0. [DOI] [PubMed] [Google Scholar]
  7. Munro A. J., Taussig M. J., Campbell R., Williams H., Lawson Y. Antigen-specific T-cell factor in cell cooperation: physical properties and mapping in the left-hand (K) half of H-2. J Exp Med. 1974 Dec 1;140(6):1579–1587. doi: 10.1084/jem.140.6.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pinchuck P., Maurer P. H. Antigenicity of polypeptides (poly alpha amino acids). XV. Studies on the immunogenicity of synthetic polypeptides in mice. J Exp Med. 1965 Oct 1;122(4):665–671. doi: 10.1084/jem.122.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Taussig M. J. T cell factor which can replace T cells in vivo. Nature. 1974 Mar 15;248(445):234–236. doi: 10.1038/248234a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES