Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Jan 1;143(1):127–142. doi: 10.1084/jem.143.1.127

Cell-mediated lympholysis of N-(3-nitro-4-hydroxy-5-iodophenylacetyl)- beta-anaylglycylglycyl-modified autologous lymphocytes. Effector cell specificity to modified cell surface components controlled by the H-2K and H-2D serological regions of the murine major histocompatibility complex

PMCID: PMC2190097  PMID: 53266

Abstract

Splenic lymphocytes from four C57BL/10 congenic mouse strains were sensitized in vitro to N(-3-nitro-4-hydroxy-5-iodophenylacetyl)-beta- alanylglycylglycyl-(N) modified autologous lymphoctyes. The effector cells generated after 5 days of culture were assayed on a series of either N-modified phytohemagglutinin-stimulated spleen cells or N- modified tumor cells. The results indicated inall cases that both N modification of the targets and H-2 homology between the modified stimulating and target cells are required for lysis to occur. In each case the effector cells were found to lyse N-modified target cells only when there was homology at either or both ends of the major histocompatibility complex (MHC) between the stimulator and target cells. B10.BR lysed targets sharing alleles at K (or K plus I-A) and/or at D. B10.A effector cell specificity was mapped to K (or K plus I-A) and/or the D half of the MHC (D or D plus I-C and/or S). The two regions of specificity determined for B10.D2 effector cells were D (or D plus S plus I-C) and a region not including D of the MHC. C57BL/10 effector cells lysed N-modified targets only if there was target cell H- 2 homology at K, I-A, and I-B or at the D serological region. As in the trinitrophenyl (TNP) system (6) B10.BR and B10.A effector cells lysed targets sharing K end H-2 serological regions greater than target cells sharing D-end serological regions. The C57BL/10 effector cells were shown to react to the K end greater than the D end, which differed from the equal reactivity seen in the TNP system for this strain. The data are consistent with the hypothesis that the antigen recognized by the effector cell includes an altered H-2 serological cell surface product. That the reaction is not "hapten specific" and the H-2 homology is required only for effector:target cell interaction was excluded by the use of two F1 combinations in which lysis of only N-modified target cells sharing the H-2 haplotype with the stimulating parental strain was obtained. Finally, it was demonstrated that N and TNP modification create distinct new antigenic determinants, since an effector cell sensitized to one modifying agent will lyse only H-2 matched target modified with that same modifying agent.

Full Text

The Full Text of this article is available as a PDF (918.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dennert G., Hatlen L. E. Induction and properties of cytotoxic T cells specific for hapten-coupled tumor cells. J Immunol. 1975 Jun;114(6):1705–1712. [PubMed] [Google Scholar]
  2. Doherty P. C., Zinkernagel R. M. A biological role for the major histocompatibility antigens. Lancet. 1975 Jun 28;1(7922):1406–1409. doi: 10.1016/s0140-6736(75)92610-0. [DOI] [PubMed] [Google Scholar]
  3. Doherty P. C., Zinkernagel R. M. H-2 compatibility is required for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. J Exp Med. 1975 Feb 1;141(2):502–507. doi: 10.1084/jem.141.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doherty P. C., Zinkernagel R. M. T-cell-mediated immunopathology in viral infections. Transplant Rev. 1974;19(0):89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  5. Forman J. On the role of the H-2 histocompatibility complex in determining the specificity of cytotoxic effector cells sensitized against syngeneic trinitrophenyl-modified targets. J Exp Med. 1975 Aug 1;142(2):403–418. doi: 10.1084/jem.142.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gardner I. D., Bowern N. A., Blanden R. V. Cell-medicated cytotoxicity against ectromelia virus-infected target cells. III. Role of the H-2 gene complex. Eur J Immunol. 1975 Feb;5(2):122–127. doi: 10.1002/eji.1830050210. [DOI] [PubMed] [Google Scholar]
  7. Gardner I., Bowern N. A., Blanden R. V. Cell-mediated cytotoxicity against ectromelia virus-infected target cells. I. Specificity and kinetics. Eur J Immunol. 1974 Feb;4(2):63–67. doi: 10.1002/eji.1830040202. [DOI] [PubMed] [Google Scholar]
  8. Inman J. K., Merchant B., Claflin L., Tacey S. E. Coupling of large haptens to proteins and cell surfaces: preparation of stable, optimally sensitized erythrocytes for hapten-specific, hemolytic plaque assays. Immunochemistry. 1973 Mar;10(3):165–174. doi: 10.1016/0019-2791(73)90005-0. [DOI] [PubMed] [Google Scholar]
  9. Katz D. H., Hamaoka T., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J Exp Med. 1973 Jun 1;137(6):1405–1418. doi: 10.1084/jem.137.6.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koszinowski U., Ertl H. Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus. Nature. 1975 Jun 12;255(5509):552–554. doi: 10.1038/255552a0. [DOI] [PubMed] [Google Scholar]
  11. Martin W. J., Wunderlich J. R., Fletcher F., Inman J. K. Enhanced immunogenicity of chemically-coated syngeneic tumor cells. Proc Natl Acad Sci U S A. 1971 Feb;68(2):469–472. doi: 10.1073/pnas.68.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schmitt-Verhulst A. M., Shearer G. M. Bifunctional major histocompatibility-linked genetic regulation of cell-mediated lympholysis to trinitrophenyl-modified autologous lymphocytes. J Exp Med. 1975 Oct 1;142(4):914–927. doi: 10.1084/jem.142.4.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shearer G. M. Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes. Eur J Immunol. 1974 Aug;4(8):527–533. doi: 10.1002/eji.1830040802. [DOI] [PubMed] [Google Scholar]
  14. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974 Oct 11;251(5475):547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
  15. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES