Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Jan 1;143(1):64–72. doi: 10.1084/jem.143.1.64

A common cell-type specific surface antigen in cultured human glial cells and fibroblasts: loss in malignant cells

PMCID: PMC2190105  PMID: 1244421

Abstract

Fibroblast surface antigen (SFA) is a high molecular weight protein antigen, first shown on the surface of cultured fibroblasts in fibrillar structures. It is shed to the extracellular medium and also present in the circulation (serum and plasma). Fibroblasts transformed by tumor viruses produce SFA but do not retain it on cell surface. In this report we show that SFA is also present in cultured nonestablished astroglial cells. The glial and fibroblast SFAs are immunologically indistinguishable. Glial cells (three different nonestablished lines) contain more SFA per milligram cellular protein than fibroblasts. SFA was located on cell surface in fibrillar striae that frequently extended out from the cell body. Fluorescence was also found intracellularly in the cytoplasm. Malignant gliomas (astrocytomas) established to grow in culture from human tumor material produced SFA into the growth medium but had very little (lines U-105 MG and U-343 MG) or no detectable (lines U-118 MG, U-251 MG, and U-343 MG-a) cell surface SFA. In cultures of the glioma cells many cells, in particular those that appeared to be in the telophase stage, stained strongly positive for intracellular cytoplasmic SFA. These data demonstrate that similar to fibroblasts transformed experimentally by oncogenic viruses, cells grown from naturally occurring human tumors (glioblastomas) produce SFA but lose ability to retain it on cell surface.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edström A., Haglid K. G., Kanje M., Rönnbäck L., Walum E. Morphological alterations and increase of S-100 protein in cultured human glioma cells deprived of serum. Exp Cell Res. 1974 Feb;83(2):426–429. doi: 10.1016/0014-4827(74)90362-0. [DOI] [PubMed] [Google Scholar]
  2. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  4. Linder E., Vaheri A., Ruoslahti E., Wartiovaara J. Distribution of fibroblast surface antigen in the developing chick embryo. J Exp Med. 1975 Jul 1;142(1):41–49. doi: 10.1084/jem.142.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Moore B. W. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965 Jun 9;19(6):739–744. doi: 10.1016/0006-291x(65)90320-7. [DOI] [PubMed] [Google Scholar]
  6. Mosesson M. W., Umfleet R. A. The cold-insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold-insoluble fraction components. J Biol Chem. 1970 Nov 10;245(21):5728–5736. [PubMed] [Google Scholar]
  7. Pontén J., Macintyre E. H. Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand. 1968;74(4):465–486. doi: 10.1111/j.1699-0463.1968.tb03502.x. [DOI] [PubMed] [Google Scholar]
  8. Pontén J., Westermark B., Hugosson R. Regulation of proliferation and movement of human glialike cells in culture. Exp Cell Res. 1969 Dec;58(2):393–400. doi: 10.1016/0014-4827(69)90520-5. [DOI] [PubMed] [Google Scholar]
  9. Rifkin D. B., Loeb J. N., Moore G., Reich E. Properties of plasminogen activators formed by neoplastic human cell cultures. J Exp Med. 1974 May 1;139(5):1317–1328. doi: 10.1084/jem.139.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ruoslahti E., Vaheri A. Interaction of soluble fibroblast surface antigen with fribrinogen and fibrin. J Exp Med. 1975 Feb 1;141(2):497–501. doi: 10.1084/jem.141.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ruoslahti E., Vaheri A., Kuusela P., Linder E. Fibroblast surface antigen: a new serum protein. Biochim Biophys Acta. 1973 Oct 18;322(2):352–358. doi: 10.1016/0005-2795(73)90310-3. [DOI] [PubMed] [Google Scholar]
  12. Ruoslahti E., Vaheri A. Novel human serum protein from fibroblast plasma membrane. Nature. 1974 Apr 26;248(5451):789–791. doi: 10.1038/248789a0. [DOI] [PubMed] [Google Scholar]
  13. Vaheri A., Ruoslahti E. Disappearance of a major cell-type specific surface glycoprotein antigen (SF) after transformation of fibroblasts by Rous sarcoma virus. Int J Cancer. 1974 May 15;13(5):579–586. doi: 10.1002/ijc.2910130502. [DOI] [PubMed] [Google Scholar]
  14. Vaheri A., Ruoslahti E. Fibroblast surface antigen produced but not retained by virus-transformed human cells. J Exp Med. 1975 Aug 1;142(2):530–535. doi: 10.1084/jem.142.2.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wartiovaara J., Linder E., Ruoslahti E., Vaheri A. Distribution of fibroblast surface antigen: association with fibrillar structures of normal cells and loss upon viral transformation. J Exp Med. 1974 Dec 1;140(6):1522–1533. doi: 10.1084/jem.140.6.1522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Westermark B., Pontén J., Hugosson R. Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol Microbiol Scand A. 1973 Nov;81(6):791–805. doi: 10.1111/j.1699-0463.1973.tb03573.x. [DOI] [PubMed] [Google Scholar]
  17. Westermark B. The deficient density-dependent growth control of human malignant glioma cells and virus-transformed glia-like cells in culture. Int J Cancer. 1973 Sep 15;12(2):438–451. doi: 10.1002/ijc.2910120215. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES