Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Jan 1;143(1):1–14. doi: 10.1084/jem.143.1.1

Concanavalin A potentiates syngeneic response in murine lymphocytes

PMCID: PMC2190107  PMID: 127828

Abstract

In an attempt to modulate the recognition processes that occur on lymphocyte membranes in mixed lymphocyte culture, responding cortisone resistant thymocytes or stimulating spleen cells (treated with mitomycin C) were pretreated with native concanavalin A (N-Con A) or succinyl-Con A (S-Con A). Highly significant cell proliferation was observed in syngeneic combinations when either the responding cells or the stimulating cells were so treated with Con A, although Con A pretreatment alone was never mitogenic. In allogeneic combinations the proliferative response with Con A pretreatment of either partner on day 3 was five to seven times higher than in the normal mixed lymphocyte reactions. The triggering of proliferation was dependent on two factors: (a) The presence of spleen cells as the stimulating cells (thymocytes were much less effective). (b) The binding of Con A molecules to either one of the partners, the effect being abrogated by the specific inhibitor of Con A, alpha-mannopyranoside. The optimal concentration of S-Con A was about twice that of N-Con A. Even more striking was the observation that cultures in which either one of the partners was pretreated with Con A in allogeneic combinations showed a strong suppression (60-80% inhibition) in the subsequent generation of the cytotoxic lymphocytes (CL). The Con A concentration required to trigger a proliferative response corresponded to that for suppressing the generation of CL. Con A pretreatment did not result in a cytotoxic activity toward syngeneic tumor cells.

Full Text

The Full Text of this article is available as a PDF (903.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbasi K., Démant P., Festenstein H., Holmes J., Huber B., Rychiková M. Mouse mixed lymphocyte reactions and cell-mediated lympholysis: genetic control and relevance to antigenic strength. Transplant Proc. 1973 Dec;5(4):1329–1337. [PubMed] [Google Scholar]
  2. Bach F. H., Widmer M. B., Bach M. L., Klein J. Serologically defined and lymphocyte-defined components of the major histocompatibility complex in the mouse. J Exp Med. 1972 Dec 1;136(6):1430–1444. doi: 10.1084/jem.136.6.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bretscher P., Cohn M. A theory of self-nonself discrimination. Science. 1970 Sep 11;169(3950):1042–1049. doi: 10.1126/science.169.3950.1042. [DOI] [PubMed] [Google Scholar]
  4. Burger M. M. Surface changes in transformed cells detected by lectins. Fed Proc. 1973 Jan;32(1):91–101. [PubMed] [Google Scholar]
  5. Cheers C., Sprent J. B lymphocytes as stimulators of a mixed lymphocyte reaction. Transplantation. 1973 Mar;15(3):336–337. doi: 10.1097/00007890-197303000-00014. [DOI] [PubMed] [Google Scholar]
  6. Coutinho A., Möller G. Editorial: Immune activation of B cells: evidence for 'one nonspecific triggering signal' not delivered by the Ig receptors. Scand J Immunol. 1974;3(2):133–146. [PubMed] [Google Scholar]
  7. Dickler H. B., Sachs D. H. Evidence for identity or close association of the Fc receptor of B lymphocytes and alloantigens determined by the Ir region of the H-2 complex. J Exp Med. 1974 Sep 1;140(3):779–796. doi: 10.1084/jem.140.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elfenbein G. J., Gelfand M. C. Proliferation of mouse bone marrow-derived lymphocytes in vitro: one mechanism of response to concanavalin A and phytochemagglutinin. Cell Immunol. 1975 Jun;17(2):463–476. doi: 10.1016/s0008-8749(75)80050-5. [DOI] [PubMed] [Google Scholar]
  9. GOLDSTEIN I. J., HOLLERMAN C. E., SMITH E. E. PROTEIN-CARBOHYDRATE INTERACTION. II. INHIBITION STUDIES ON THE INTERACTION OF CONCANAVALIN A WITH POLYSACCHARIDES. Biochemistry. 1965 May;4:876–883. doi: 10.1021/bi00881a013. [DOI] [PubMed] [Google Scholar]
  10. Gunther G. R., Wang J. L., Yahara I., Cunningham B. A., Edelman G. M. Concanavalin A derivatives with altered biological activities. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1012–1016. doi: 10.1073/pnas.70.4.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrison M. R., Paul W. E. Stimulus-response in the mixed lymphocyte reaction. J Exp Med. 1973 Dec 1;138(6):1602–1607. doi: 10.1084/jem.138.6.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howe M. L., Goldstein A. L., Battisto J. R. Isogeneic lymphocyte interaction: recognition of self antigens by cells of the neonatal thymus. Proc Natl Acad Sci U S A. 1970 Oct;67(2):613–619. doi: 10.1073/pnas.67.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kubota J., Kanatani H. Concanavalin A: its action in inducing Oocyte maturation-inducing substance in starfish follicle cells. Science. 1975 Feb 21;187(4177):654–655. doi: 10.1126/science.1167977. [DOI] [PubMed] [Google Scholar]
  14. Kyminski J. W., Smith R. T. Evidence for a B-cell -like helper function in mixed lymphocyte culture between immunocompetent thymus cells. J Exp Med. 1975 Feb 1;141(2):360–373. doi: 10.1084/jem.141.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lafferty K. J., Misko I. S., Cooley M. A. Allogeneic stimulation modulates the in vitro response of T cells to transplantation antigen. Nature. 1974 May 17;249(454):275–276. doi: 10.1038/249275a0. [DOI] [PubMed] [Google Scholar]
  16. Lindahl-Kiessling K. Mechanism of phytohemagglutinin (PHA) action. V. PHA compared with concanavalin A (Con A). Exp Cell Res. 1972 Jan;70(1):17–26. doi: 10.1016/0014-4827(72)90176-0. [DOI] [PubMed] [Google Scholar]
  17. Piguet P. F., Dewey H. K., Vassalli P. Study of the cells proliferating in parent versus F hybrid mixed lymphocyte culture. J Exp Med. 1975 Apr 1;141(4):775–787. [PMC free article] [PubMed] [Google Scholar]
  18. Ranney D. F., Gordon R. O., Pincus J. H., Oppenheim J. J. Biological effects of murine histocompatibility antigen solubilized with 3 M potassium chloride. Transplantation. 1973 Dec;16(6):558–564. doi: 10.1097/00007890-197312000-00005. [DOI] [PubMed] [Google Scholar]
  19. Rutishauser U., Sachs L. Receptor mobility and the mechanism of cell-cell binding induced by concanavalin A. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2456–2460. doi: 10.1073/pnas.71.6.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shearer G. M. Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes. Eur J Immunol. 1974 Aug;4(8):527–533. doi: 10.1002/eji.1830040802. [DOI] [PubMed] [Google Scholar]
  21. Shearer G. M., Lozner E. C., Rehn T. G., Schmitt-Verhulst A. M. Mixed lymphocyte reactivity and cell-mediated lympholysis to trinitrophenyl-modified autologous lymphocytes in C57BL/10 congenic and B10-A recombinant mouse strains. J Exp Med. 1975 Apr 1;141(4):930–934. [PMC free article] [PubMed] [Google Scholar]
  22. Siraganian R. P., Siragania P. A. Mechanism of action of concanavalin A on human basophils. J Immunol. 1975 Feb;114(2 Pt 2):886–893. [PubMed] [Google Scholar]
  23. van Boehmer H., Byrd W. J. Responsiveness of thymus cells to syngeneic and allogeneic lymphoid cells. Nat New Biol. 1972 Jan 12;235(54):50–52. doi: 10.1038/newbio235050a0. [DOI] [PubMed] [Google Scholar]
  24. von Boehmer H., Sprent J. Expression of M locus differences by B cells but not T cells. Nature. 1974 May 24;249(455):363–365. doi: 10.1038/249363a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES