Abstract
The subcutaneous injection of cells of any one of five unselected murine tumors resulted very rapidly in the liberation into the circulation of a small molecular weight factor that severely impaired the capacity of the host to resist experimental infection with Listeria monocytogenes and Yersinia enterocolitica. It was found that the factor appeared in blood within 8 h of injecting tumor cells subcutaneously. That it possessed potent physiological activity was evidenced by the demonstration that an infusion of as little as 0.015 ml of tumor-bearer serum strikingly suppressed the capacity of normal recipients to resist bacterial infection. It was reasoned on the basis of the knowledge that the only cells in mice with the capacity to destroy Listeria are macrophages, that suppression of antibacterial resistance was caused by the ability of the tumor-suppressor factor to interfere, either directly or indirectly, with the antibacterial functions of these mononuclear phagocytic cells. The results are consistent with the hypothesis that at least some malignant neoplastic cells are naturally selected to avoid destruction by native and acquired antitumor mechanisms of mononuclear phagocytes.
Full Text
The Full Text of this article is available as a PDF (1,019.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burnet F. M. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27. doi: 10.1159/000386035. [DOI] [PubMed] [Google Scholar]
- Carter P. B., Collins F. M. Experimental Yersinia enterocolitica infection in mice: kinetics of growth. Infect Immun. 1974 May;9(5):851–857. doi: 10.1128/iai.9.5.851-857.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fauve R. M., Hevin B., Jacob H., Gaillard J. A., Jacob F. Antiinflammatory effects of murine malignant cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4052–4056. doi: 10.1073/pnas.71.10.4052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Germain R. N., Williams R. M., Benacerraf B. Specific and nonspecific antitumor immunity. II. Macrophage-mediated nonspecific effector activity induced by BCG and similar agents. J Natl Cancer Inst. 1975 Mar;54(3):709–720. [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Control of carcinogenesis: a possible role for the activated macrophage. Science. 1972 Sep 15;177(4053):998–1000. doi: 10.1126/science.177.4053.998. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. In vitro nonimmunologic destruction of cells with abnormal growth characteristics by adjuvant activated macrophages. Proc Soc Exp Biol Med. 1972 Mar;139(3):1049–1052. doi: 10.3181/00379727-139-36295. [DOI] [PubMed] [Google Scholar]
- Inagaki J., Rodriguez V., Bodey G. P. Proceedings: Causes of death in cancer patients. Cancer. 1974 Feb;33(2):568–573. doi: 10.1002/1097-0142(197402)33:2<568::aid-cncr2820330236>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Kearney R., Nelson D. S. Concomitant immunity to syngeneic methylcholanthrene-induced tumours in mice. Occurrence and specificity of concomitant immunity. Aust J Exp Biol Med Sci. 1973 Dec;51(6):723–735. doi: 10.1038/icb.1973.70. [DOI] [PubMed] [Google Scholar]
- Keller R. Cytostatic elimination of syngeneic rat tumor cells in vitro by nonspecifically activated macrophages. J Exp Med. 1973 Sep 1;138(3):625–644. doi: 10.1084/jem.138.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller R. Mechanisms by which activated normal macrophages destroy syngeneic rat tumour cells in vitro. Cytokinetics, non-involvement of T lymphocytes, and effect of metabolic inhibitors. Immunology. 1974 Aug;27(2):285–298. [PMC free article] [PubMed] [Google Scholar]
- Kersey J. H., Spector B. D., Good R. A. Immunodeficiency and cancer. Adv Cancer Res. 1973;18:211–230. doi: 10.1016/s0065-230x(08)60753-8. [DOI] [PubMed] [Google Scholar]
- Klein E. Tumour immunology; escape mechanisms. Ann Inst Pasteur (Paris) 1972 Apr;122(4):593–602. [PubMed] [Google Scholar]
- North R. J. Cellular mediators of anti-Listeria immunity as an enlarged population of short lived, replicating T cells. Kinetics of their production. J Exp Med. 1973 Aug 1;138(2):342–355. doi: 10.1084/jem.138.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J., Deissler J. F. Nature of "memory" in T-cell mediated antibacterial immunity: cellular parameters that distinguish between the active immune response and a state of "memory". Infect Immun. 1975 Oct;12(4):761–767. doi: 10.1128/iai.12.4.761-767.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. T cell dependence of macrophage activation and mobilization during infection with Mycobacterium tuberculosis. Infect Immun. 1974 Jul;10(1):66–71. doi: 10.1128/iai.10.1.66-71.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. The action of cortisone acetate on cell-mediated immunity to infection. Suppression of host cell proliferation and alteration of cellular composition of infective foci. J Exp Med. 1971 Dec 1;134(6):1485–1500. doi: 10.1084/jem.134.6.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. The action of cortisone acetate on cell-mediated immunity to infection: histogenesis of the lymphoid cell response and selective elimination of committed lymphocytes. Cell Immunol. 1972 Mar;3(3):501–515. doi: 10.1016/0008-8749(72)90255-9. [DOI] [PubMed] [Google Scholar]
- North R. J. The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J Exp Med. 1970 Sep 1;132(3):521–534. doi: 10.1084/jem.132.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OLD L. J., BOYSE E. A. IMMUNOLOGY OF EXPERIMENTAL TUMORS. Annu Rev Med. 1964;15:167–186. doi: 10.1146/annurev.me.15.020164.001123. [DOI] [PubMed] [Google Scholar]
- Tashjian A. H., Jr, Voelkel E. F., Goldhaber P., Levine L. Prostaglandins, calcium metabolism and cancer. Fed Proc. 1974 Jan;33(1):81–86. [PubMed] [Google Scholar]
- Tuttle R. L., North R. J. Mchanisms of antitumor action of Corynebacterium parvum: nonspecific tumor cell destruction at site of immunologically mediated sensitivity reaction to C. parvum. J Natl Cancer Inst. 1975 Dec;55(6):1403–1411. doi: 10.1093/jnci/55.6.1403. [DOI] [PubMed] [Google Scholar]
