Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Apr 1;143(4):953–968. doi: 10.1084/jem.143.4.953

Activation of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. II. The role of serine proteases, cyclic nucleotides, and contractile elements in PAF-induced secretion

PMCID: PMC2190161  PMID: 3619

Abstract

Secretion of serotonin from platelets induced by platelet-activating factor (PAF) derived from antigen-stimulated, IgE-sensitized rabbit basophils was studied to further characterize the biochemical requirements. Inhibition of secretion with diisopropylphosphofluoridate (DFP) was observed if the DFP was present during the reaction, but not if platelets or PAF were pretreated with the inhibitor. This suggested a role for an activatable serine protease in the secretion. Supporting evidence came from the observation that other protease inhibitors and a variety of low molecular weight amino acid esters were also inhibitory. TAMe was most effective, and AGLMe and LeuMe were inactive, indicating a specificity for different esters. Secretion was reduced by agents that increased intracellular cyclic AMP (cAMP), but enhanced by alpha- adrenergic stimulation, which reduced the levels of cAMP. Concurrent with PAF-induced secretion, a reduction in cAMP levels was observed. No effect of cyclic GMP or cholinergic stimulation was found. Secretion was inhibited by colchicine and enhanced by cytochalasin B, suggesting a role for microfilaments and microtubules. The effects of these three systems on PAF-induced secretion indicate the basic uniformity of the secretory process in platelets (and other cells) whatever the stimulus. The uniqueness of the reaction apparently lies in the stimulus-receptor interaction and the nature of the serine protease which is activated.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
  2. Barbaro J. F., Zvaifler N. J. Antigen induced histamine release from platelets of rabbits producing homologous PCA antibody. Proc Soc Exp Biol Med. 1966 Aug-Sep;122(4):1245–1247. doi: 10.3181/00379727-122-31371. [DOI] [PubMed] [Google Scholar]
  3. Becker E. L., Henson P. M. In vitro studies of immunologically induced secretion of mediators from cells and related phenomena. Adv Immunol. 1973;17:93–193. doi: 10.1016/s0065-2776(08)60732-4. [DOI] [PubMed] [Google Scholar]
  4. Becker E. L. The relationship of the chemotactic behavior of the complement-derived factors, C3a, C5a, and C567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes. J Exp Med. 1972 Feb 1;135(2):376–387. doi: 10.1084/jem.135.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benveniste J., Henson P. M., Cochrane C. G. Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med. 1972 Dec 1;136(6):1356–1377. doi: 10.1084/jem.136.6.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benveniste J. Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils. Nature. 1974 Jun 7;249(457):581–582. doi: 10.1038/249581a0. [DOI] [PubMed] [Google Scholar]
  7. Estensen R. D., Hill H. R., Quie P. G., Gogan N., Goldberg N. D. Cyclic GMP and cell movement. Nature. 1973 Oct 26;245(5426):458–460. doi: 10.1038/245458a0. [DOI] [PubMed] [Google Scholar]
  8. Gillespie E., Lichtenstein L. M. Histamine release from human leukocytes: studies with deuterium oxide, colchicine, and cytochalasin B. J Clin Invest. 1972 Nov;51(11):2941–2947. doi: 10.1172/JCI107118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haslam R. J., Davidson M. M., McClenaghan M. D. Cytochalasin B, the blood platelet release reaction and cyclic GMP. Nature. 1975 Feb 6;253(5491):455–457. doi: 10.1038/253455a0. [DOI] [PubMed] [Google Scholar]
  10. Haslam R. J., McClenaghan M. D. Effects of collagen and of aspirin on the concentration of guanosine 3':5'-cyclic monophosphate in human blood platelets: measurement by a prelabelling technique. Biochem J. 1974 Feb;138(2):317–320. doi: 10.1042/bj1380317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henson P. M., Oades Z. G. Enhancement of immunologically induced granule exocytosis from neutrophils by cytochalasin B. J Immunol. 1973 Jan;110(1):290–293. [PubMed] [Google Scholar]
  12. Henson P. M. Release of vasoactive amines from rabbit platelets induced by sensitized mononuclear leukocytes and antigen. J Exp Med. 1970 Feb;131(2):287–306. doi: 10.1084/jem.131.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaliner M., Orange R. P., Austen K. F. Immunological release of histamine and slow reacting substance of anaphylaxis from human lung. J Exp Med. 1972 Sep 1;136(3):556–567. doi: 10.1084/jem.136.3.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kravis T. C., Henson P. M. IgE-induced release of a platelet-activating factor from rabbit lung. J Immunol. 1975 Dec;115(6):1677–1681. [PubMed] [Google Scholar]
  15. Lewis R. A., Goetzl E. J., Wasserman S. I., Valone F. H., Rubin R. H., Austen K. F. The release of four mediators of immediate hypersensitivity from human leukemic basophils. J Immunol. 1975 Jan;114(1 Pt 1):87–92. [PubMed] [Google Scholar]
  16. Morgan P. H., Robinson N. C., Walsh K. A., Neurath H. Inactivation of bovine trypsinogen and chymotrypsinogen by diisopropylphosphorofluoridate. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3312–3316. doi: 10.1073/pnas.69.11.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mustard J. F., Packham M. A. Factors influencing platelet function: adhesion, release, and aggregation. Pharmacol Rev. 1970 Jun;22(2):97–187. [PubMed] [Google Scholar]
  18. SUTHERLAND E. W., RALL T. W., MENON T. Adenyl cylase. I. Distribution, preparation, and properties. J Biol Chem. 1962 Apr;237:1220–1227. [PubMed] [Google Scholar]
  19. Salzman E. W. Cyclic AMP and platelet function. N Engl J Med. 1972 Feb 17;286(7):358–363. doi: 10.1056/NEJM197202172860708. [DOI] [PubMed] [Google Scholar]
  20. Siraganian R. P., Osler A. G. Antigenic release of histamine from rabbit leukocytes. J Immunol. 1970 Jun;104(6):1340–1347. [PubMed] [Google Scholar]
  21. Siraganian R. P., Osler A. G. Destruction of rabbit platelets in the allergic response of sensitized leukocytes. I. Demonstration of a fluid phase intermediate. J Immunol. 1971 May;106(5):1244–1251. [PubMed] [Google Scholar]
  22. Unanue E. R. Cellular events folowing binding of antigen to lymphocytes. Am J Pathol. 1974 Oct;77(1):2–22. [PMC free article] [PubMed] [Google Scholar]
  23. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
  24. White J. G. Effects of colchicine and Vinca alkaloids on human platelets. I. Influence on platelet microtubules and contractile function. Am J Pathol. 1968 Aug;53(2):281–291. [PMC free article] [PubMed] [Google Scholar]
  25. Zucker-Franklin D. Microfibrils of blood platelets: their relationship TO MICROTUBULES AND THE CONTRACTILE PROTEIN. J Clin Invest. 1969 Jan;48(1):165–175. doi: 10.1172/JCI105965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zucker-Franklin D. The submembranous fibrils of human blood platelets. J Cell Biol. 1970 Oct;47(1):293–299. doi: 10.1083/jcb.47.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES