Abstract
The main conclusion from this study is that C3 receptors are not required for the generation from B cells of a thymus-dependent 7S antibody response. The requirement for C3 receptors on the precursors of antibody-forming cells was studied in an adoptive transfer system using thoracic duct lymphocytes (TDL) from primed rats as a source of precursors and irradiated recipients as hosts. 7S precursors were found in both the CR+ and the CR- fractions of TDL and it was established that the response transferred by CR- cells did not arise from either a raidoresistant B cell in the host or from CR+ cells contaminating the CR- population. Thus, the C3 receptor is not obligatory for B-cell-T- cell cooperation in the 7S response. The precursors of 19S antibody- forming cells were found only in the CR+ subpopulation. The CR-Ig+ subpopulation was shown to contain all the B blasts in rat TDL and a very small number (approximately 1% of all TDL) of small lymphocytes. This latter population contained the CR- 7S precursors and contributed approximately 20% of the total adoptive secondary 7S response transferred by CR+ and CR- subpopulations combined. This observation suggests that the percentage of rat TDL committed to carry 7S memory is small, a conclusion which is confirmed and extended in the following paper.
Full Text
The Full Text of this article is available as a PDF (871.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basten A., Warner N. L., Mandel T. A receptor for antibody on B lymphocytes. II. Immunochemical and electron microscopy characteristics. J Exp Med. 1972 Mar 1;135(3):627–642. doi: 10.1084/jem.135.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byfield P., Christie G. H., Howard J. G. Alternative potentiating and inhibitory effects of GVH reaction on formation of antibodies against a thymus-independent polysaccharide (S3). J Immunol. 1973 Jul;111(1):72–84. [PubMed] [Google Scholar]
- Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
- Dukor P., Bianco C., Nussenzweig V. Tissue localization of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes. Proc Natl Acad Sci U S A. 1970 Oct;67(2):991–997. doi: 10.1073/pnas.67.2.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dukor P., Hartmann K. U. Hypothesis. Bound C3 as the second signal for B-cell activation. Cell Immunol. 1973 Jun;7(3):349–356. doi: 10.1016/0008-8749(73)90199-8. [DOI] [PubMed] [Google Scholar]
- Dukor P., Schumann G., Gisler R. H., Dierich M., König W., Hadding U., Bitter-Suermann D. Complement-dependent B-cell activation by cobra venom factor and other mitogens? J Exp Med. 1974 Feb 1;139(2):337–354. doi: 10.1084/jem.139.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldmann M., Pepys M. B. Role of C3 in in vitro lymphocyte cooperation. Nature. 1974 May 10;249(453):159–161. doi: 10.1038/249159a0. [DOI] [PubMed] [Google Scholar]
- GOWANS J. L., KNIGHT E. J. THE ROUTE OF RE-CIRCULATION OF LYMPHOCYTES IN THE RAT. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:257–282. doi: 10.1098/rspb.1964.0001. [DOI] [PubMed] [Google Scholar]
- Gowans J. L. Life-span, recirculation, and transformation of lymphocytes. Int Rev Exp Pathol. 1966;5:1–24. [PubMed] [Google Scholar]
- Howard J. C., Hunt S. V., Gowans J. L. Identification of marrow-derived and thymus-derived small lymphocytes in the lymphoid tissue and thoracic duct lymph of normal rats. J Exp Med. 1972 Feb 1;135(2):200–219. doi: 10.1084/jem.135.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt S. V., Ellis S. T., Gowans J. L. The role of lymphocytes in antibody formation. IV. Carriage of immunological memory by lymphocyte fractions separated by velocity sedimentation and on glass bead columns. Proc R Soc Lond B Biol Sci. 1972 Sep 19;182(1067):211–231. doi: 10.1098/rspb.1972.0076. [DOI] [PubMed] [Google Scholar]
- Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten antibody responses. 3. Stimulation of antibody synthesis and facilitation of hapten-specific secondary antibody responses by graft-versus-host reactions. J Exp Med. 1971 Feb 1;133(2):169–186. doi: 10.1084/jem.133.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence W., Jr, Simonsen M. The property of "strength" of histocompatibility antigens, and their ability to produce antigenic competition. Transplantation. 1967 Sep 5;5(5):1304–1322. doi: 10.1097/00007890-196709000-00009. [DOI] [PubMed] [Google Scholar]
- McWilliams M., Phillips-Quagliata J. M., Lamm M. E. Characteristics of mesenteric lymph node cells homing to gut-associated lymphoid tissue in syngeneic mice. J Immunol. 1975 Jul;115(1):54–58. [PubMed] [Google Scholar]
- Möller G. Suppressive effect of graft versus host reactions on the immune response to heterologous red cells. Immunology. 1971 Apr;20(4):597–609. [PMC free article] [PubMed] [Google Scholar]
- Parish C. R., Hayward J. A. The lymphocyte surface. II. Separation of Fc receptor, C'3 receptor and surface immunoglobulin-bearing lymphocytes. Proc R Soc Lond B Biol Sci. 1974 Aug 27;187(1086):65–81. doi: 10.1098/rspb.1974.0061. [DOI] [PubMed] [Google Scholar]
- Parish C. R., Hayward J. A. The lymphocyte surface. III. Function of Fc receptor, C'3 receptor and surface Ig bearing lymphocytes: identification of a radioresistant B cell. Proc R Soc Lond B Biol Sci. 1974 Nov 19;187(1089):379–395. doi: 10.1098/rspb.1974.0083. [DOI] [PubMed] [Google Scholar]
- Parish C. R. Separation and functional analysis of subpopulations of lymphocytes bearing complement and Fc receptors. Transplant Rev. 1975;25:98–120. doi: 10.1111/j.1600-065x.1975.tb00727.x. [DOI] [PubMed] [Google Scholar]
- Pepys M. B. Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J Exp Med. 1974 Jul 1;140(1):126–145. doi: 10.1084/jem.140.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepys M. B. Role of complement in induction of the allergic response. Nat New Biol. 1972 May 31;237(74):157–159. doi: 10.1038/newbio237157a0. [DOI] [PubMed] [Google Scholar]
- Pryjma J., Humphrey J. H. Prolonged C3 depletion by cobra venom factor in thymus-deprived mice and its implication for the role of C3 as an essential second signal for B-cell triggering. Immunology. 1975 Mar;28(3):569–576. [PMC free article] [PubMed] [Google Scholar]
- Wahl S. M., Iverson G. M., Oppenheim J. J. Induction of guinea pig B-cell lymphokine synthesis by mitogenic and nonmitogenic signals to Fc, Ig, and C3 receptors. J Exp Med. 1974 Dec 1;140(6):1631–1645. doi: 10.1084/jem.140.6.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldmann H., Lachmann P. J. The failure to show a necessary role for C3 in the in vitro antibody response. Eur J Immunol. 1975 Feb;5(2):185–193. doi: 10.1002/eji.1830050307. [DOI] [PubMed] [Google Scholar]
- Williams A. F., Gowans J. L. The presence of IgA on the surface of rat thoractic duct lymphocytes which contain internal IgA. J Exp Med. 1975 Feb 1;141(2):335–345. doi: 10.1084/jem.141.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]