Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Jun 1;143(6):1464–1474. doi: 10.1084/jem.143.6.1464

Introduction of B-chain-inactivated ricin into mouse macrophages and rat Kupffer cells via their membrane Fc receptors

PMCID: PMC2190205  PMID: 1271014

Abstract

Experiments have been made to test whether the toxic lectin ricin can be bound to and introduced into cells by some other mechanism than via its B chain, the natural binding moiety of the toxin, without its toxic effect being neutralized. Complexes consisting of ricin and antibodies specifically directed against ricin B chain were incubated with mouse peritoneal macrophages and rat Kupffer cells, which are known to possess surface receptors for the Fc portion of the immunoglobulin molecule. After incubation for 26 h, cellular protein synthesis, as measured by incorporation of labeled leucine into acid-insoluble material, was completely inhibited. HeLa cells, which do not possess Fc receptors, were unaffected by the complex. The effect of the complex on protein synthesis of macrophages was prevented by soluble antigen- antibody complexes, but not by the presence of lactose which prevents attachment of the ricin B chain to the cell membrane. The [ricin- antiricin B] complex was attached to red cells, and the resulting complex was incubated with rat Kupffer cells. Cellular protein synthesis ceased after 6 h, and phase contrast microscopy studies showed that the complexes were taken up by the Kupffer cells. The data indicate that ricin, when present in the complex with antiricin B, can be introduced into cells through cell membrane receptors other than the B chain receptor, in this case the Fc receptor, and that the internalized toxin retains a least part of its activity.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  2. Bonventre P. F., Saelinger C. B., Ivins B., Woscinski C., Amorini M. Interaction of cultured mammalian cells with [125I] diphtheria toxin. Infect Immun. 1975 Apr;11(4):675–684. doi: 10.1128/iai.11.4.675-684.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huber H., Douglas S. D., Fudenberg H. H. The IgG receptor: an immunological marker for the characterization of mononuclear cells. Immunology. 1969 Jul;17(1):7–21. [PMC free article] [PubMed] [Google Scholar]
  5. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Montanaro L., Sperti S., Stirpe F. Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin. Biochem J. 1973 Nov;136(3):677–683. doi: 10.1042/bj1360677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Munthe-Kaas A. C., Berg T., Seglen P. O., Seljelid R. Mass isolation and culture of rat kupffer cells. J Exp Med. 1975 Jan 1;141(1):1–10. doi: 10.1084/jem.141.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nicolson G. L., Blaustein J., Etzler M. E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry. 1974 Jan 1;13(1):196–204. doi: 10.1021/bi00698a029. [DOI] [PubMed] [Google Scholar]
  9. Olsnes S., Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry. 1973 Jul 31;12(16):3121–3126. doi: 10.1021/bi00740a028. [DOI] [PubMed] [Google Scholar]
  10. Olsnes S., Pihl A. Inhibition of peptide chain elongation. Nature. 1972 Aug 25;238(5365):459–461. doi: 10.1038/238459a0. [DOI] [PubMed] [Google Scholar]
  11. Olsnes S., Pihl A. Isolation and properties of abrin: a toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur J Biochem. 1973 May;35(1):179–185. doi: 10.1111/j.1432-1033.1973.tb02823.x. [DOI] [PubMed] [Google Scholar]
  12. Olsnes S., Pihl A. Ricin - a potent inhibitor of protein synthesis. FEBS Lett. 1972 Feb 15;20(3):327–329. doi: 10.1016/0014-5793(72)80098-x. [DOI] [PubMed] [Google Scholar]
  13. Olsnes S., Refsnes K., Pihl A. Mechanism of action of the toxic lectins abrin and ricin. Nature. 1974 Jun 14;249(458):627–631. doi: 10.1038/249627a0. [DOI] [PubMed] [Google Scholar]
  14. Olsnes S., Saltvedt E., Pihl A. Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem. 1974 Feb 10;249(3):803–810. [PubMed] [Google Scholar]
  15. Pappenheimer A. M., Jr, Olsnes S., Harper A. A. Lectins from Abrus precatorius and Ricinus communis. I. Immunochemical relationships between toxins and agglutinins. J Immunol. 1974 Sep;113(3):835–841. [PubMed] [Google Scholar]
  16. Phillips-Quagliata J. M., Levine B. B., Quagliata F., Uhr J. W. Mechanisms underlying binding of immune complexes to macrophages. J Exp Med. 1971 Mar 1;133(3):589–601. doi: 10.1084/jem.133.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Refsnes K., Olsnes S., Pihl A. On the toxic proteins abrin and ricin. Studies of their binding to and entry into Ehrlich ascites cells. J Biol Chem. 1974 Jun 10;249(11):3557–3562. [PubMed] [Google Scholar]
  18. Sperti S., Montanaro L., Mattioli A., Stirpe F. Inhibition by ricin of protein synthesis in vitro: 60 S ribosomal subunit as the target of the toxin. Biochem J. 1973 Nov;136(3):813–815. doi: 10.1042/bj1360813. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES