Abstract
Previous reports from our laboratory have demonstrated the stimulation of specific suppressor T cells in genetic nonresponder mice after immunization with the terpolymer of L- glutamic acid, L-alanine, and L-tyrosine (GAT) (1,2) and with the copolymer of L-glutamic acid and L-tyrosine (GT) (3-5). These findings raise two important questions: (a) do the specific suppressor T cells inhibit an antibody response which would otherwise develop in nonresponder mice; and, (b) can specific helper T cells inhibit an antibody response which would otherwise develop in nonresponder mice; and, (b) can specific helper T-cell activity be detected in these animals. Responsiveness appears to be completely dominant over suppression in (responder x suppressor)F(1) hybrids, therefore, we have been unable to detect suppressor cells in these hybrids after conventional immunization with GAT (2). However , using special conditions of antigen administration, GAT helper activity could be demonstrated in nonresponder DBA/1 (“suppressor”) mice. Thus, GAT-specific helper activity was not detected in these nonresponder animals after immunization with GAT irrespective of the adjuvant used, but could be stimulated by macrophage-bound GAT or by GAT complexed with methylated bovine serum albumin GAT-MBSA (6). In the current report we have taken advantage of the fact that suppressor T-cell activity is more sensitive to cyclophosphamide treatment than T-cell helper activity (7) to demonstrate the presence of GT-specific helper activity in “nonresponder” BALB/c mice. We describe: (a) the dose of cyclophosphamide and conditions of treatment which inhibits the well-documented stimulation of specific suppressor T cells in BALB/c mice injected with GT previous to immunization with GT-MBSA, and (b) the ability of cyclophosphamide to permit the development of primary PFC responses to GT in these “nonresponder” mice. These cyclophosphamide-induced responses are not characterized by the high levels of antibody detected in genetic responder animals.
Full Text
The Full Text of this article is available as a PDF (345.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askenase P. W., Hayden B. J., Gershon R. K. Augmentation of delayed-type hypersensitivity by doses of cyclophosphamide which do not affect antibody responses. J Exp Med. 1975 Mar 1;141(3):697–702. doi: 10.1084/jem.141.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debré P., Kapp J. A., Benacerraf B. Genetic control of specific immune suppression. I. Experimental conditions for the stimulation of suppressor cells by the copolymer L-glutamic acid50-L-tyrosine50 (GT) in nonresponder BALB/c mice. J Exp Med. 1975 Dec 1;142(6):1436–1446. doi: 10.1084/jem.142.6.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debré P., Kapp J. A., Dorf M. E., Benacerraf B. Genetic control of specific immune suppression. II. H-2-linked dominant genetic control of immune suppression by the random copolymer L-glutamic acid50-L-tyrosine50 (GT). J Exp Med. 1975 Dec 1;142(6):1447–1454. doi: 10.1084/jem.142.6.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debré P., Waltenbaugh C., Dorf M., Benacerraf B. Genetic control of specific immune suppression. III. Mapping of H-2 complex complementing genes controlling immune suppression by the random copolymer L-glutamic acid50-L-tyrosine50 (GT). J Exp Med. 1976 Jul 1;144(1):272–276. doi: 10.1084/jem.144.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorf M. E., Benacerraf B. Complementation of H-2-linked Ir genes in the mouse. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3671–3675. doi: 10.1073/pnas.72.9.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. 3. Tolerogenic properties of the terpolymer L-glutamic acid 60-L-alanine30-L-tyrosine10 (GAT) for spleen cells from nonresponder (H-2s and H-2q) mice. J Exp Med. 1974 Jul 1;140(1):172–184. doi: 10.1084/jem.140.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapp J. A., Pierce C. W., Benacerraf B. Genetic control of immune responses in vitro. VI. Experimental conditions for the development of helper T-cell activity specific for the terpolymer L-glutamic aicd60-L-alanine30-L-tyrosine10 (GAT) in nonresponder mice. J Exp Med. 1975 Jul 1;142(1):50–60. doi: 10.1084/jem.142.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapp J. A., Pierce C. W., De la Croix F., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). J Immunol. 1976 Feb;116(2):305–309. [PubMed] [Google Scholar]
- Kapp J. A., Pierce C. W., Schlossman S., Benacerraf B. Genetic control of immune responses in vitro. V. Stimulation of suppressor T cells in nonresponder mice by the terpolymer L-glutamic acid 60-L-alanine 30-L-tyrosine 10 (GAT). J Exp Med. 1974 Sep 1;140(3):648–659. doi: 10.1084/jem.140.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]