Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Sep 1;144(3):739–753. doi: 10.1084/jem.144.3.739

Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies

PMCID: PMC2190413  PMID: 182897

Abstract

Passive transfer of experimental autoimmune myasthenia gravis (EAMG) was achieved using the gamma globulin fraction and purified IgG from sera of rats immunized with Electrophus electricus (eel) acetylcholine receptor (AChR). This demonstrates the critical role of anti-AChR antibodies in impairing neuromuscular transmission in EAMG. Passive transfer of anti-AChR antibodies from rats with chronic EAMG induced signs of the acute phase of EAMG in normal recipient rats, including invasion of the motor end-plate region by mononuclear inflammatory cells. Clinical, eletrophysiological, histological, and biochemical signs of acute EAMG were observed by 24 h after antibody transfer. Recipient rats developed profound weakness and fatigability, and the posture characteristic of EAMG. Striking weight loss was attributable to dehydration. Recipient rats showed large decreases in amplitude of muscle responses to motor nerve stimulation, and repetitive nerve stimulation induced characteristic decrementing responses. End-plate potentials were not detectable in many muscle fibers, and the amplitudes of miniature end-plate potentials were reduced in the others. Passively transferred EAMG more severely affected the forearm muscles than diaphragm muscles, though neuromuscular transmission was impaired and curare sensitivity was increased in both muscles. Some AChR extracted from the muscles of rats with passively transferred EAMG was found to be complexed with antibody, and the total yield of AChR per rat was decreased. The quantitative decrease in AChR approximately paralleled in time the course of clinical and electrophysiological signs. The amount of AChR increased to normal levels and beyond at the time neuromuscular transmission was improving. The excess of AChR extractable from muscle as the serum antibody level decreased probably represented extrajunctional receptors formed in response to functional denervation caused by phagocytosis of the postsynaptic membrane by macrophages. The amount of antibody required to passively transfer EAMG was less than required to bind all AChR molecules in a rat's musculature. The effectiveness of samll amounts of antibody was probably amplified by the activation of complement and by the destruction of large areas of postsynaptic membrane by phagocytic cells. A self-sustaining autoimmune response to AChR was not provoked in animals with passively transferred EAMG.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharonov A., Abramsky O., Tarrab-Hazdai R., Fuchs S. Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet. 1975 Aug 23;2(7930):340–342. doi: 10.1016/s0140-6736(75)92779-8. [DOI] [PubMed] [Google Scholar]
  2. Bevan S., Heinemann S., Lennon V. A., Lindstrom J. Reduced muscle acetylcholine sensitivity in rats immunised with acetylcholine receptor. Nature. 1976 Apr 1;260(5550):438–439. doi: 10.1038/260438a0. [DOI] [PubMed] [Google Scholar]
  3. Brockes J. P., Hall Z. W. Synthesis of acetylcholine receptor by denervated rat diaphragm muscle. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1368–1372. doi: 10.1073/pnas.72.4.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Devreotes P. N., Fambrough D. M. Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol. 1975 May;65(2):335–358. doi: 10.1083/jcb.65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engel A. G., Santa T. Histometric analysis of the ultrastructure of the neuromuscular junction in myasthenia gravis and in the myasthenic syndrome. Ann N Y Acad Sci. 1971 Sep 15;183:46–63. doi: 10.1111/j.1749-6632.1971.tb30741.x. [DOI] [PubMed] [Google Scholar]
  6. Engel A. G., Tsujihata M., Lindstrom J. M., Lennon V. A. The motor end plate in myasthenia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultrastructural study. Ann N Y Acad Sci. 1976;274:60–79. doi: 10.1111/j.1749-6632.1976.tb47676.x. [DOI] [PubMed] [Google Scholar]
  7. Green D. P., Miledi R., Vincent A. Neuromuscular transmission after immunization against acetylcholine receptors. Proc R Soc Lond B Biol Sci. 1975 Apr 29;189(1094):57–68. doi: 10.1098/rspb.1975.0041. [DOI] [PubMed] [Google Scholar]
  8. Lambert E. H., Lindstrom J. M., Lennon V. A. End-plate potentials in experimental autoimmune myasthenia gravis in rats. Ann N Y Acad Sci. 1976;274:300–318. doi: 10.1111/j.1749-6632.1976.tb47694.x. [DOI] [PubMed] [Google Scholar]
  9. Lennon V. A., Lindstrom J. M., Seybold M. E. Experimental autoimmune myasthenia gravis: cellular and humoral immune responses. Ann N Y Acad Sci. 1976;274:283–299. doi: 10.1111/j.1749-6632.1976.tb47693.x. [DOI] [PubMed] [Google Scholar]
  10. Lennon V. A., Lindstrom J. M., Seybold M. E. Experimental autoimmune myasthenia: A model of myasthenia gravis in rats and guinea pigs. J Exp Med. 1975 Jun 1;141(6):1365–1375. doi: 10.1084/jem.141.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lindstrom J. M., Lennon V. A., Seybold M. E., Whittingham S. Experimental autoimmune myasthenia gravis and myasthenia gravis: biochemical and immunochemical aspects. Ann N Y Acad Sci. 1976;274:254–274. doi: 10.1111/j.1749-6632.1976.tb47691.x. [DOI] [PubMed] [Google Scholar]
  12. Okumura K., Herzenberg L. A., Murphy D. B., McDevitt H. O., Herzenberg L. A. Selective expression of H-2 (i-region) loci controlling determinants on helper and suppressor T lymphocytes. J Exp Med. 1976 Sep 1;144(3):685–698. doi: 10.1084/jem.144.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Patrick J., Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973 May 25;180(4088):871–872. doi: 10.1126/science.180.4088.871. [DOI] [PubMed] [Google Scholar]
  14. Seybold M. E., Lambert E. H., Lennon V. A., Lindstrom J. M. Experimental autoimmune myasthenia: clinical, neurophysiologic, and pharmacologic aspects. Ann N Y Acad Sci. 1976;274:275–282. doi: 10.1111/j.1749-6632.1976.tb47692.x. [DOI] [PubMed] [Google Scholar]
  15. Sugiyama H., Benda P., Meunier J. C., Changeux J. P. Immunological characterisation of the cholinergic receptor protein from Electrophorus electricus. FEBS Lett. 1973 Sep 1;35(1):124–128. doi: 10.1016/0014-5793(73)80592-7. [DOI] [PubMed] [Google Scholar]
  16. Tarrab-Hazdi R., Aharonov A., Abramsky O., Yaar I., Fuchs S. Passive transfer of experimental autoimmune myasthenia by lymph node cells in inbred guinea pigs. J Exp Med. 1975 Sep 1;142(3):785–789. doi: 10.1084/jem.142.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Toyka K. V., Brachman D. B., Pestronk A., Kao I. Myasthenia gravis: passive transfer from man to mouse. Science. 1975 Oct 24;190(4212):397–399. doi: 10.1126/science.1179220. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES