Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Nov 2;144(5):1175–1187. doi: 10.1084/jem.144.5.1175

Role of B lymphocytes in cell-mediated immunity. I. Requirement for T cells or T-cell products for antigen-induced B-cell activation

PMCID: PMC2190452  PMID: 1086881

Abstract

Although B lymphocytes can be triggered by B-cell mitogens and by certain other molecules to produce lymphokines, they do not produce lymphokines when stimulated with specific soluble protein antigens. We have investigated whether T-cell help would enable B cells to produce lymphokines when activated by antigens. Addition of small numbers of T cells to B-cell cultures resulted in significant production of a monocyte chemotactic factor. T cells could be replaced by supernates of antigen-stimulated T cells, demonstrating both that the chemotactic factor was B-cell-dervied and that T-cell help was mediated by a soluble factor. Although the T-cell factor was nonantigen specific, B- cell activation required the presence of both antigen and T-cell factor. Thus, it appears that although dependent upon T cells, B lymphocytes may play an important role in amplification of cell- mediated immune responses.

Full Text

The Full Text of this article is available as a PDF (715.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armerding D., Sachs D. H., Katz D. H. Activation of T and B lymphocytes in vitro. III. Presence of Ia determinants on allogeneic effect factor. J Exp Med. 1974 Dec 1;140(6):1717–1722. doi: 10.1084/jem.140.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloom B. R., Shevach E. Requirement for T cells in the production of migration inhibitory factor. J Exp Med. 1975 Nov 1;142(5):1306–1311. doi: 10.1084/jem.142.5.1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bretscher P., Cohn M. A theory of self-nonself discrimination. Science. 1970 Sep 11;169(3950):1042–1049. doi: 10.1126/science.169.3950.1042. [DOI] [PubMed] [Google Scholar]
  4. Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
  5. Coutinho A., Gronowicz E., Bullock W. W., Möller G. Mechanism of thymus-independent immunocyte triggering. Mitogenic activation of B cells results in specific immune responses. J Exp Med. 1974 Jan 1;139(1):74–92. doi: 10.1084/jem.139.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feldmann M., Basten A. Cell interactions in the immune response in vitro. IV. Comparison of the effects of antigen-specific and allogeneic thymus-derived cell factors. J Exp Med. 1972 Oct 1;136(4):722–736. doi: 10.1084/jem.136.4.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Katz D. H., Benacerraf B. The regulatory influence of activated T cells on B cell responses to antigen. Adv Immunol. 1972;15:1–94. doi: 10.1016/s0065-2776(08)60683-5. [DOI] [PubMed] [Google Scholar]
  8. Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten antibody responses. 3. Stimulation of antibody synthesis and facilitation of hapten-specific secondary antibody responses by graft-versus-host reactions. J Exp Med. 1971 Feb 1;133(2):169–186. doi: 10.1084/jem.133.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klaus G. G., Humphrey J. H. Mechanisms of b cell triggering: studies with t cell-independent antigens. Transplant Rev. 1975;23:105–118. doi: 10.1111/j.1600-065x.1975.tb00152.x. [DOI] [PubMed] [Google Scholar]
  10. Miller J. F., Osoba D. Current concepts of the immunological function of the thymus. Physiol Rev. 1967 Jul;47(3):437–520. doi: 10.1152/physrev.1967.47.3.437. [DOI] [PubMed] [Google Scholar]
  11. Rocklin R. E., MacDermott R. P., Chess L., Schlossman S. F., David J. R. Studies on mediator production by highly purified human T and B lymphocytes. J Exp Med. 1974 Nov 1;140(5):1303–1316. doi: 10.1084/jem.140.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosenstreich D. L., Blake J. T., Rosenthal A. S. The peritoneal exudate lymphocyte. I. Differences in antigen responsiveness between peritoneal exudate and lymph node lymphocytes from immunized guinea pigs. J Exp Med. 1971 Nov 1;134(5):1170–1186. doi: 10.1084/jem.134.5.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schimpl A., Wecker E. Replacement of T-cell function by a T-cell product. Nat New Biol. 1972 May 3;237(70):15–17. doi: 10.1038/newbio237015a0. [DOI] [PubMed] [Google Scholar]
  14. Taussig M. J. T cell factor which can replace T cells in vivo. Nature. 1974 Mar 15;248(445):234–236. doi: 10.1038/248234a0. [DOI] [PubMed] [Google Scholar]
  15. Turk J. L., Parker D. Modulation of T-lymphocyte function by B lymphocytes in delayed hypersensitivity. Int Arch Allergy Appl Immunol. 1975;49(1-2):241–246. doi: 10.1159/000231403. [DOI] [PubMed] [Google Scholar]
  16. Wahl S. M., Wilton J. M., Rosenstreich D. L., Oppenheim J. J. The role of macrophages in the production of lymphokines by T and B lymphocytes. J Immunol. 1975 Apr;114(4):1296–1301. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES