Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1976 Dec 1;144(6):1438–1457. doi: 10.1084/jem.144.6.1438

Specific transplantation tolerance induced by autoimmunization against the individual's own, naturally occurring idiotypic, antigen-binding receptors

PMCID: PMC2190473  PMID: 12245

Abstract

Serum or urine from normal adult Lewis rats can be shown to contain detectable amounts of idiotypic, antigen-binding receptors with specificity for the major histocompatibility complex locus antigens of the rat, the Ag-B locus antigens. Such purified naturally occurring receptor molecules, be they of T- or B-lymphocyte origin, can be used in a polymerized form to provoke the production of auto-anti-idiotypic antibodies when injected back into normal Lewis rats. As a consequence of this autoimmunity, lymphocytes of these Lewis rats can be shown to be depleted of cells carrying the relevant idiotypic receptors signifying reactivity against a given Ag-B locus-determined antigen(s). This specific lack of idiotypic lymphocytes is manifested as a selective loss of reactivity against the relevant Ag-B-incompatible antigens as measured by graft versus host or MLC reactions. Furthermore, autoimmune Lewis rats display specific transplantation tolerance against the skin grafts from the relevant strain, as demonstrated by specific prolongation of graft survival. A further indication of the specific tolerence state of these rats comes from the highly reduced ability to produce circulating antibodies against the relevant Ag-B antigens. No side effects of these autoimmunization procedures have been noted so far. It would thus seem clear that a prolonged state of specific transplantation tolerance can be achieved via autoimmunization against the individual's naturally occurring idiotypic, antigen-binding receptors.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binz H., Lindenmann J., Wigzell H. Cell-bound receptors for alloantigens on normal lymphocytes. II. Antialloantibody serum contains specific factors reacting with relevant immunocompetent T lymphocytes. J Exp Med. 1974 Sep 1;140(3):731–741. doi: 10.1084/jem.140.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. I. Demonstration of similar or identical idiotypes on IgG molecules and T-cell receptors with specificity for the same alloantigens. J Exp Med. 1975 Jul 1;142(1):197–211. doi: 10.1084/jem.142.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. II. Determination of frequency and characteristics of idiotypic T and B lymphocytes in normal rats using direct visualization. J Exp Med. 1975 Nov 1;142(5):1218–1230. doi: 10.1084/jem.142.5.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. IV. Isolation of two groups of naturally occurring, idiotypic molecules with specific antigen-binding activity in the serum and urine of normal rats. Scand J Immunol. 1975 Sep;4(5-6):591–600. doi: 10.1111/j.1365-3083.1975.tb02665.x. [DOI] [PubMed] [Google Scholar]
  5. Binz H., Wigzell H. Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. V. Biochemical and serological characteristics of naturally occurring, soluble antigen-binding T-lymphocyte-derived molecules. Scand J Immunol. 1976;5(5):559–571. doi: 10.1111/j.1365-3083.1976.tb00311.x. [DOI] [PubMed] [Google Scholar]
  6. Binz H., Wigzell H. Successful induction of specific tolerance to transplantation antigens using autoimmunisation against the recipient's own natural antibodies. Nature. 1976 Jul 22;262(5566):294–295. doi: 10.1038/262294a0. [DOI] [PubMed] [Google Scholar]
  7. Click R. E., Benck L., Alter B. J. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell Immunol. 1972 Feb;3(2):264–276. doi: 10.1016/0008-8749(72)90165-7. [DOI] [PubMed] [Google Scholar]
  8. Daugharty H., Hopper J. E., MacDonald A. B., Nisonoff A. Quantitative investigations of idiotypic antibodies. I. Analysis of precipitating antibody populations. J Exp Med. 1969 Nov 1;130(5):1047–1062. doi: 10.1084/jem.130.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Della Corte E., Parkhouse R. M. Biosynthesis of immunoglobulin A (IgA). Secretion and addition of carbohydrate to monomer and polymer forms of a mouse myeloma protein. Biochem J. 1973 Nov;136(3):589–596. doi: 10.1042/bj1360589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ford W. L., Burr W., Simonsen M. A lymph node weight assay for the graft-versus-host activity of rat lymphoid cells. Transplantation. 1970 Sep;10(3):258–266. doi: 10.1097/00007890-197009000-00007. [DOI] [PubMed] [Google Scholar]
  11. Ford W. L., Simmonds S. J., Atkins R. C. Early cellular events in a systemic graft-vs.-host reaction. II. Autoradiographic estimates of the frequency of donor lymphocytes which respond to each Ag-B-determined antigenic complex. J Exp Med. 1975 Mar 1;141(3):681–696. doi: 10.1084/jem.141.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  13. Howard J. C., Wilson D. B. Specific positive selection of lymphocytes reactive to strong histocompatibility antigens. J Exp Med. 1974 Sep 1;140(3):660–672. doi: 10.1084/jem.140.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McKearn T. J., Stuart F. P., Fitch F. W. Anti-idiotypic antibody in rat transplantation immunity. I. Production of anti-idiotypic antibody in animals repeatedly immunized with alloantigens. J Immunol. 1974 Dec;113(6):1876–1882. [PubMed] [Google Scholar]
  15. Parkhouse R. M., Askonas B. A. Immunoglobulin M biosynthesis. Intracellular accumulation of 7S subunits. Biochem J. 1969 Nov;115(2):163–169. doi: 10.1042/bj1150163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rodkey L. S. Studies of idiotypic antibodies. Production and characterization of autoantiidiotypic antisera. J Exp Med. 1974 Mar 1;139(3):712–720. doi: 10.1084/jem.139.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strayer D. S., Cosenza H., Lee W. M., Rowley D. A., Köhler H. Neonatal tolerance induced by antibody against antigen-specific receptor. Science. 1974 Nov 15;186(4164):640–643. doi: 10.1126/science.186.4164.640. [DOI] [PubMed] [Google Scholar]
  18. Wilson D. B., Blyth JL NOWELL P. C. Quantitative studies on the mixed lymphocyte interaction in rats. 3. Kinetics of the response. J Exp Med. 1968 Nov 1;128(5):1157–1181. doi: 10.1084/jem.128.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES