Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Feb 1;141(2):287–296. doi: 10.1084/jem.141.2.287

Cytolytic lymphocytic cells with complement receptor in human blood. Induction of cytolysis by IgG antibody but not by target cell-bound C3

PMCID: PMC2190528  PMID: 1167571

Abstract

Human blood lymphocytes were fractionated on glass bead columns charged with sheep erythrocyte (Es) membranes-bearing human C3b (7,000-10,000 molecules/Es). In the passaged cells the proportion of C receptor lymphocytes was strongly reduced, in parallel with the capacity to lyse chicken erythrocytes (Ec) in the presence of IgG-rabbit anti-Ec antibody. In other experiments, lymphocytes forming rosettes with Es bearing activated rabbit complement [C(ra)] from C6-deficient rabbits were removed by centrifugation through human serum albumin-gelatine mixtures. This procedure also depleted the lymphocyte preparations of antibody-dependent cytolytic effector cells. The results suggest that rations of antibody-dependent cytolytic effector cells. The result suggest that such effector cells have receptors for human C as well as for C(ra). Lymphocytes were not able to lyse erythrocytes bearing either human C3b (similar to 30,000 molecules/Ec) or activated C(ra) in the absence if IgG antierythrocyte antibodies. Under the same experimental conditions these target cells were efficiently lysed in the presence of small amounts of IgG antitarget cell antibodies. This suggests that the interaction between the cellular Fcreceptors and the Fc part of the inducing antibodies is of special significance for the triggering of the cell-mediated lytic reaction. However, although target cell-bound C did not trigger cytolysis, it seemed to potentiate antibody-dependent cytolysis, probably by enhancing effector cell- target cell contacts.

Full Text

The Full Text of this article is available as a PDF (591.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianco C., Patrick R., Nussenzweig V. A population of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes. I. Separation and characterization. J Exp Med. 1970 Oct 1;132(4):702–720. doi: 10.1084/jem.132.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  3. Cooper N. R. Immune adherence by the fourth component of complement. Science. 1969 Jul 25;165(3891):396–398. doi: 10.1126/science.165.3891.396. [DOI] [PubMed] [Google Scholar]
  4. Greenberg A. H., Hudson L., Shen L., Roitt I. M. Antibody-dependent cell-mediated cytotoxicity due to a "null" lymphoid cell. Nat New Biol. 1973 Mar 28;242(117):111–113. doi: 10.1038/newbio242111a0. [DOI] [PubMed] [Google Scholar]
  5. Harding B., Pudifin D. J., Gotch F., MacLennan I. C. Cytotoxic lymphocytes from rats depleted of thymus processed cells. Nat New Biol. 1971 Jul 21;232(29):80–82. doi: 10.1038/newbio232080a0. [DOI] [PubMed] [Google Scholar]
  6. Huber H., Polley M. J., Linscott W. D., Fudenberg H. H., Müller-Eberhard H. J. Human monocytes: distinct receptor sites for the third component of complement and for immunoglobulin G. Science. 1968 Dec 13;162(3859):1281–1283. doi: 10.1126/science.162.3859.1281. [DOI] [PubMed] [Google Scholar]
  7. Jondal M., Holm G., Wigzell H. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med. 1972 Aug 1;136(2):207–215. doi: 10.1084/jem.136.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jondal M., Wigzell H., Aiuti F. Human lymphocyte subpopulations: classification according to surface markers and-or functional characteristics. Transplant Rev. 1973;16:163–195. doi: 10.1111/j.1600-065x.1973.tb00120.x. [DOI] [PubMed] [Google Scholar]
  9. MUELLER-EBERHARD H. J., BIRO C. E. ISOLATION AND DESCRIPTION OF THE FOURTH COMPONENT OF HUMAN COMPLEMENT. J Exp Med. 1963 Sep 1;118:447–466. doi: 10.1084/jem.118.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mantovani B., Rabinovitch M., Nussenzweig V. Phagocytosis of immune complexes by macrophages. Different roles of the macrophage receptor sites for complement (C3) and for immunoglobulin (IgG). J Exp Med. 1972 Apr 1;135(4):780–792. doi: 10.1084/jem.135.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Müllerèberhard H. J., Dalmasso A. P., Calcott M. A. The reaction mechanism of beta-1C-globulin (C'3) in immune hemolysis. J Exp Med. 1966 Jan 1;123(1):33–54. doi: 10.1084/jem.123.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NILSSON U. R., MUELLER-EBERHARD H. J. ISOLATION OF BETA IF-GLOBULIN FROM HUMAN SERUM AND ITS CHARACTERIZATION AS THE FIFTH COMPONENT OF COMPLEMENT. J Exp Med. 1965 Aug 1;122:277–298. doi: 10.1084/jem.122.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nelson R. A., Jr, Jensen J., Gigli I., Tamura N. Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry. 1966 Mar;3(2):111–135. doi: 10.1016/0019-2791(66)90292-8. [DOI] [PubMed] [Google Scholar]
  14. Perlmann P., Perlmann H., Biberfeld P. Specifically cytotoxic lymphocytes produced by preincubation with antibody-complexed target cells. J Immunol. 1972 Feb;108(2):558–561. [PubMed] [Google Scholar]
  15. Perlmann P., Perlmann H. Contactual lysis of antibody-coated chicken erythrocytes by purified lymphocytes. Cell Immunol. 1970 Sep;1(3):300–315. doi: 10.1016/0008-8749(70)90051-1. [DOI] [PubMed] [Google Scholar]
  16. Perlmann P., Perlmann H., Lachmann P. Lymphocyte-associated complement: role of C8 in certain cell-mediated lytic reactions. Scand J Immunol. 1974;3(1):77–84. doi: 10.1111/j.1365-3083.1974.tb01235.x. [DOI] [PubMed] [Google Scholar]
  17. Perlmann P., Perlmann H., Wigzell H. Lymphocyte mediated cytotoxicity in vitro. Induction and inhibition by humoral antibody and nature of effector cells. Transplant Rev. 1972;13:91–114. doi: 10.1111/j.1600-065x.1972.tb00061.x. [DOI] [PubMed] [Google Scholar]
  18. Polley M. J., Müller-Eberhard H. J. Enharncement of the hemolytic activity of the second component of human complement by oxidation. J Exp Med. 1967 Dec 1;126(6):1013–1025. doi: 10.1084/jem.126.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Polley M. J., Müller-Eberhard H. J. The second component of human complement: its isolation, fragmentation by C'1 esterase, and incorporation into C'3 convertase. J Exp Med. 1968 Sep 1;128(3):533–551. doi: 10.1084/jem.128.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ross G. D., Polley M. J., Rabellino E. M., Grey H. M. Two different complement receptors on human lymphocytes. One specific for C3b and one specific for C3b inactivator-cleaved C3b. J Exp Med. 1973 Oct 1;138(4):798–811. doi: 10.1084/jem.138.4.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ruddy S., Austen K. F. C3b inactivator of man. II. Fragments produced by C3b inactivator cleavage of cell-bound or fluid phase C3b. J Immunol. 1971 Sep;107(3):742–750. [PubMed] [Google Scholar]
  22. Valet G., Cooper N. R. Isolation and characterization of the proenzyme form of the C1s subunit of the first complement component. J Immunol. 1974 Jan;112(1):339–350. [PubMed] [Google Scholar]
  23. Van Boxel J. A., Paul W. E., Green I., Frank M. M. Antibody-dependent lymphoid cell-mediated cytotoxicity: role of complement. J Immunol. 1974 Jan;112(1):398–403. [PubMed] [Google Scholar]
  24. Van Boxel J. A., Stobo J. D., Paul W. E., Green I. Antibody-dependent lymphoid cell-mediated cytotoxicity: no requirement for thymus-derived lymphocytes. Science. 1972 Jan 14;175(4018):194–196. doi: 10.1126/science.175.4018.194. [DOI] [PubMed] [Google Scholar]
  25. Wigzell H., Sundqvist K. G., Yoshida T. O. Separation of cells according to surface antigens by the use of antibody-coated columns. Fractionation of cells carrying immunoglobulins and blood group antigen. Scand J Immunol. 1972;1(1):75–87. doi: 10.1111/j.1365-3083.1972.tb03737.x. [DOI] [PubMed] [Google Scholar]
  26. Yata J., Desgranges C., Tachibana T., de Thé G. Separation of human lymphocytes forming spontaneous rosettes with sheep erythrocytes. Biomedicine. 1973 Nov 20;19(11):475–478. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES