Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Feb 1;141(2):269–286. doi: 10.1084/jem.141.2.269

Suppression of the immune response by alpha-fetoprotein on the primary and secondary antibody response

PMCID: PMC2190533  PMID: 46267

Abstract

Mouse amniotic fluid was shown to contain a noncytotoxic inhibitor of primary gammaM and secondary gammaM, gammaG subclass splenic plaque forming cells in vitro to SRBC. The suppressive effect was not abolished by exhaustive dialysis or by absorption of mouse amniotic fluid (MAF) with SRBC. Polyacrylamide gel analysis showed that dialyzed MAF was composed of three major protein components, transferrin, albumin, and alpha-fetoprotein (AFP). The selective removal of each of these patients from MAF by affinity chromatography suggested that AFP was the immunosuppressive substance in MAF. This conclusion was verified by the demonstration that pure AFP suppressed in vitro antibody synthesis in microgram quantities whereas equivalent amounts of normal mouse serum, transferrin, or albumin did not. Dose-response studies showed that the effect of AFP in the isolated form was equivalent to the suppressive effect of comparable amounts of AFP in MAF. gammaA and gammaG plaque-forming cell (PFC) responses were suppressed by a significantly lower concentration of AFP than was the gammaM PFC response. The degree of suppression watration of AFP than was the gammaM PFC response. The degree of suppression was dependent on the time at which AFP was added to the cultures; MAF added to antigen- stimulated cultures up to 24 h after initiation of cultures was immunosuppressive whereas similar additions of MAF at 48 h after initiation or later did not suppress. The duration of exposure of spleen cells to MAF in cultures without antigen necessary to achieve suppression of a subsequent primary immune response was determine-d to be approximately 8 h. The results suggest that AFP may have an immunoregulatry function. This has potentially important implications in the maternal-fetal relationship, the immune capabilities of the fetus and newborn, and in certain malignant and nonmalignant diseases in which AFP is elevated.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELEV G. I., PEROVA S. D., KHRAMKOVA N. I., POSTNIKOVA Z. A., IRLIN I. S. Production of embryonal alpha-globulin by transplantable mouse hepatomas. Transplantation. 1963 Apr;1:174–180. doi: 10.1097/00007890-196301020-00004. [DOI] [PubMed] [Google Scholar]
  2. ARNASON B. G., VAUXST-CYRC DE, RELYVELD E. H. ROLE OF THE THYMUS IN IMMUNE REACTIONS IN RATS. IV. IMMUNOGLOBULINS AND ANTIBODY FORMATION. Int Arch Allergy Appl Immunol. 1964;25:206–224. doi: 10.1159/000229522. [DOI] [PubMed] [Google Scholar]
  3. Abelev G. I. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res. 1971;14:295–358. doi: 10.1016/s0065-230x(08)60523-0. [DOI] [PubMed] [Google Scholar]
  4. Aussel C., Uriel J., Mercier-Bodard C. Rat alpha-fetoprotein: isolation, characterization and estrogen-binding properties. Biochimie. 1973;55(11):1431–1437. doi: 10.1016/s0300-9084(74)80550-x. [DOI] [PubMed] [Google Scholar]
  5. Bullock W. W., Möller E. "Spontaneous" B cell activation due to loss of normal mouse serum suppressor. Eur J Immunol. 1972 Dec;2(6):514–517. doi: 10.1002/eji.1830020609. [DOI] [PubMed] [Google Scholar]
  6. Chrambach A., Reisfeld R. A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem. 1967 Jul;20(1):150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
  7. Clough J. D., Mims L. H., Strober W. Deficient IgA antibody responses to arsanilic acid bovine serum albumin (BSA) in neonatally thymectomized rabbits. J Immunol. 1971 Jun;106(6):1624–1629. [PubMed] [Google Scholar]
  8. Cohen I. R. Cell-mediated autoimmunity: antigen reactive lymphocytes recruit specific effector lymphocytes. Nat New Biol. 1973 Mar 14;242(115):60–61. doi: 10.1038/newbio242060a0. [DOI] [PubMed] [Google Scholar]
  9. Contractor S. F., Davies H. Effect of human chorionic somatomammotrophin and human chorionic gonadotrophin on phytohaemagglutinin-induced lymphocyte transformation. Nat New Biol. 1973 Jun 27;243(130):284–286. doi: 10.1038/newbio243284a0. [DOI] [PubMed] [Google Scholar]
  10. Cooperband S. R., Bondevik H., Schmid K., Mannick J. A. Transformation of human lymphocytes: inhibition by homologous alpha globulin. Science. 1968 Mar 15;159(3820):1243–1244. doi: 10.1126/science.159.3820.1243. [DOI] [PubMed] [Google Scholar]
  11. Cuatrecasas P., Wilchek M., Anfinsen C. B. Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci U S A. 1968 Oct;61(2):636–643. doi: 10.1073/pnas.61.2.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  13. Fox R. A., Dudley F. J., Sherlock S. The primary immune response to haemocyanin in patients with primary biliary cirrhosis. Clin Exp Immunol. 1973 Aug;14(4):473–480. [PMC free article] [PubMed] [Google Scholar]
  14. Gatti R. A. Serum inhibitors of lymphocyte responses. Lancet. 1971 Jun 26;1(7713):1351–1352. doi: 10.1016/s0140-6736(71)91906-4. [DOI] [PubMed] [Google Scholar]
  15. Gitlin D., Boesman M. Fetus-specific serum proteins in several mammals and their relation to human alpha-fetoprotein. Comp Biochem Physiol. 1967 May;21(2):327–336. doi: 10.1016/0010-406x(67)90793-1. [DOI] [PubMed] [Google Scholar]
  16. Glasgow A. H., Cooperband S. R., Occhino J. C., Schmid K., Mannick J. A. Inhibition of secondary immune responses in vivo by immunoregulatory alpha globulin (IRA). Proc Soc Exp Biol Med. 1971 Nov;138(2):753–757. doi: 10.3181/00379727-138-35982. [DOI] [PubMed] [Google Scholar]
  17. Grabar P. Embryonic constituents in tumors and antibodies in cancerous patients. Curr Top Microbiol Immunol. 1968;44:86–99. [PubMed] [Google Scholar]
  18. Grey H. M., Hirst J. W., Cohn M. A new mouse immunoglobulin: IgG3. J Exp Med. 1971 Feb 1;133(2):289–304. doi: 10.1084/jem.133.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hand T. L., Ceglowski W. S., Damrongsak D., Friedman H. Development of antibody-forming cells in neonatal mice: stimulation and inhibition by calf thymus fractions. J Immunol. 1970 Aug;105(2):442–450. [PubMed] [Google Scholar]
  20. Hellström K. E., Hellström I., Brawn J. Abrogation of cellular immunity to antigenically foreign mouse embryonic cells by a serum factor. Nature. 1969 Nov 29;224(5222):914–915. doi: 10.1038/224914a0. [DOI] [PubMed] [Google Scholar]
  21. Howe M. L., Goldstein A. L., Battisto J. R. Isogeneic lymphocyte interaction: recognition of self antigens by cells of the neonatal thymus. Proc Natl Acad Sci U S A. 1970 Oct;67(2):613–619. doi: 10.1073/pnas.67.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johnson A. M., Umansky I., Alper C. A., Everett C., Greenspan G. Amniotic fluid proteins: maternal and fetal contributions. J Pediatr. 1974 Apr;84(4):588–593. doi: 10.1016/s0022-3476(74)80687-6. [DOI] [PubMed] [Google Scholar]
  23. Keast D. Immunosurveillance and cancer. Lancet. 1970 Oct 3;2(7675):710–712. doi: 10.1016/s0140-6736(70)91973-2. [DOI] [PubMed] [Google Scholar]
  24. Luzzati A. L., Jacobson E. B. Serum immunoglobulin levels in nude mice. Eur J Immunol. 1972 Oct;2(5):473–474. doi: 10.1002/eji.1830020518. [DOI] [PubMed] [Google Scholar]
  25. MEDAWAR P. B., SPARROW E. M. The effects of adrenocortical hormones, adrenocorticotrophic hormone and pregnancy on skin transplantation immunity in mice. J Endocrinol. 1956 Nov;14(3):240–256. doi: 10.1677/joe.0.0140240. [DOI] [PubMed] [Google Scholar]
  26. MOWBRAY J. F. Ability of large doses of an alpha-2 plasma protein fraction to inhibit antibody production. Immunology. 1963 May;6:217–225. [PMC free article] [PubMed] [Google Scholar]
  27. MacSween R. N., Thomas M. A. Lymphocyte transformation by phytohaemagglutinin (PHA) and purified protein derivative (PPD) in primary biliary cirrhosis. Evidence of serum inhibitory factors. Clin Exp Immunol. 1973 Dec;15(4):523–533. [PMC free article] [PubMed] [Google Scholar]
  28. Mannick J. A., Schmid K. Prolongation of allograft survival by an alpha globulin isolated from normal blood. Transplantation. 1967 Jul;5(4 Suppl):1231–1238. doi: 10.1097/00007890-196707001-00063. [DOI] [PubMed] [Google Scholar]
  29. Marbrook J. Primary immune response in cultures of spleen cells. Lancet. 1967 Dec 16;2(7529):1279–1281. doi: 10.1016/s0140-6736(67)90393-5. [DOI] [PubMed] [Google Scholar]
  30. Maráz A., Petri I. B. Intrinsic alteration of lymphocyte reactivity in women with normal pregnancy or tumor of placental origin. Cell Immunol. 1974 Mar 15;10(3):496–499. doi: 10.1016/0008-8749(74)90142-7. [DOI] [PubMed] [Google Scholar]
  31. Murgita R. A., Mattioli C. A., Tomasi T. B., Jr Production of a runting syndrome and selective A deficiency in mice by the administration of anti-heavy chain antisera. J Exp Med. 1973 Jul 1;138(1):209–228. doi: 10.1084/jem.138.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murgita R. A., Vas S. I. Isoelectric separation of mouse immunoglobulins. J Immunol. 1970 Feb;104(2):514–517. [PubMed] [Google Scholar]
  33. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  34. Occhino J. C., Glasgow A. H., Cooperband S. R., Mannick J. A., Schmid K. Isolation of an immunosuppressive peptide fraction from human plasma. J Immunol. 1973 Mar;110(3):685–694. [PubMed] [Google Scholar]
  35. Pierce C. W., Johnson B. M., Gershon H. E., Asofsky R. Immune responses in vitro. 3. Development of primary gamma-M, gamma-G, and gamma-A plaque-forming cell responses in mouse spleen cell cultures stimulated with heterologous erythrocytes. J Exp Med. 1971 Aug 1;134(2):395–416. doi: 10.1084/jem.134.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Purtilo D. T., Hallgren H. M., Yunis E. J. Depressed maternal lymphocyte response to phytohaemagglutinin in human pregnancy. Lancet. 1972 Apr 8;1(7754):769–771. doi: 10.1016/s0140-6736(72)90522-3. [DOI] [PubMed] [Google Scholar]
  37. Ruoslahti E., Pihko H., Seppälä M. Alpha-fetoprotein: immunochemical purification and chemical properties. Expression in normal state and in malignant and non-malignant liver disease. Transplant Rev. 1974;20(0):38–60. doi: 10.1111/j.1600-065x.1974.tb00140.x. [DOI] [PubMed] [Google Scholar]
  38. Sell S., Jalowayski I., Bellone C., Wepsic H. T. Isolation and characterization of rat 1 -fetoprotein. Cancer Res. 1972 Jun;32(6):1184–1189. [PubMed] [Google Scholar]
  39. Sterzl J., Silverstein A. M. Developmental aspects of immunity. Adv Immunol. 1967;6:337–459. doi: 10.1016/s0065-2776(08)60525-8. [DOI] [PubMed] [Google Scholar]
  40. Takeya K., Nomoto K. Characteristics of antibody response in young or thymectomized mice. J Immunol. 1967 Oct;99(4):831–836. [PubMed] [Google Scholar]
  41. Thong Y. H., Steele R. W., Vincent M. M., Hensen S. A., Bellanti J. A. Impaired in vitro cell-mediated immunity to rubella virus during pregnancy. N Engl J Med. 1973 Sep 20;289(12):604–606. doi: 10.1056/NEJM197309202891203. [DOI] [PubMed] [Google Scholar]
  42. Tomasi T. B., Jr, Hauptman S. P. The binding of alpha-1 antitrypsin to human IgA. J Immunol. 1974 Jun;112(6):2274–2277. [PubMed] [Google Scholar]
  43. Torrigiani G. Quantitative estimation of antibody in the immunoglobulin classes of the mouse. II. Thymic dependence of the different classes. J Immunol. 1972 Jan;108(1):161–164. [PubMed] [Google Scholar]
  44. Veit B. C., Michael J. G. Immune response suppression by an inhibitor in normal and immune mouse serum. Nat New Biol. 1972 Feb 23;235(60):238–240. doi: 10.1038/newbio235238a0. [DOI] [PubMed] [Google Scholar]
  45. Veit B., Michael J. G. Characterization of an immunosuppressive factor present in mouse serum. J Immunol. 1973 Aug;111(2):341–351. [PubMed] [Google Scholar]
  46. WISE R. W., BALLARD F. J., EZEKIEL E. DEVELOPMENTAL CHANGES IN THE PLASMA PROTEIN PATTERN OF THE RAT. Comp Biochem Physiol. 1963 May;9:23–30. doi: 10.1016/0010-406x(63)90024-0. [DOI] [PubMed] [Google Scholar]
  47. Waldmann T. A., McIntire K. R. Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia. Lancet. 1972 Nov 25;2(7787):1112–1115. doi: 10.1016/s0140-6736(72)92717-1. [DOI] [PubMed] [Google Scholar]
  48. Warner N. L., Herzenberg L. A. Tolerance and immunity to maternally derived incompatible IgG 2a -globulin in mice. J Exp Med. 1970 Sep 1;132(3):440–447. doi: 10.1084/jem.132.3.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  50. Wekerle H., Cohen I. R., Feldman M. Lymphocyte receptors for autoantigens, autologous serum inhibits self-recognition. Nat New Biol. 1973 Jan 3;241(105):25–26. doi: 10.1038/newbio241025a0. [DOI] [PubMed] [Google Scholar]
  51. Whang H. Y., Neter E. Antigen-associated immunosuppressant: effect of serum on immune response. Science. 1969 Jan 17;163(3864):290–291. doi: 10.1126/science.163.3864.290. [DOI] [PubMed] [Google Scholar]
  52. Wortis H. H., Taylor R. B., Dresser D. W. Antibody production studied by means of the localized haemolysis in gel (LHG) assay. II. Assay procedure. Immunology. 1968 Jan;14(1):69–79. [PMC free article] [PubMed] [Google Scholar]
  53. van Furth R., Schuit H. R., Hijmans W. The immunological development of the human fetus. J Exp Med. 1965 Dec 1;122(6):1173–1188. doi: 10.1084/jem.122.6.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES