Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Apr 1;173(4):823–832. doi: 10.1084/jem.173.4.823

Generation of T cells with lytic specificity for atypical antigens. I. A mitochondrial antigen in the rat

PMCID: PMC2190809  PMID: 1672544

Abstract

F1 rats primed with normal parental strain lymphocyte populations and restimulated in culture with parental lymphoblasts generate potent cytotoxic T cell responses to unusual antigen systems. Here we describe in the Lewis (L)/DA anti-DA combination an antigen system most likely of mitochondrial origin with the following properties: it is transmitted maternally from DA strain females, inherited in an extra- chromosomal manner, restricted by class I RT1Aa major histocompatibility complex gene products, extinguished on target cells treated with chloramphenicol, and its pattern of expression in different rat strains correlates with restriction fragment-length polymorphisms of mitochondrial DNA. Sequence analysis of the rat ND1 gene indicates that the maternally transferred factor in the rat is not a homologue of the maternally transmitted factor responsible for the mitochondrial antigen in mice. In keeping with its inheritance from DA females, this antigen is present on target cells from (DA female x L male)F1 donors and all other F1 combinations derived from DA female parents, but absent from target cells from some F1 combinations (L/DA and Wistar-Furth [WF]/DA) derived from DA strain males. The presence of this antigen in other F1 combinations (Brown Norway [BN]/DA, August 2880 [AUG]/DA, and PVG/DA) indicates that this mitochondrial antigen system is shared by the DA, BN, and PVG strains, but not by the L and WF strains.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. J. The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J Exp Med. 1975 Dec 1;142(6):1349–1364. doi: 10.1084/jem.142.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke A. Mitochondrial genome: defects, disease, and evolution. J Med Genet. 1990 Jul;27(7):451–456. doi: 10.1136/jmg.27.7.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies J. D., Wilson D. H., Butcher G. W., Wilson D. B. Generation of T cells with lytic specificity for atypical antigens. II. A novel antigen system in the rat dependent on homozygous expression of major histocompatibility complex genes of the class I-like RT1C region. J Exp Med. 1991 Apr 1;173(4):833–839. doi: 10.1084/jem.173.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies J. D., Wilson D. H., Wilson D. B. Generation of T cells with lytic specificity for atypical antigens. III. Priming F1 animals with antigen-bearing cells also having reactivity for host alloantigens allows for potent lytic T cell responses. J Exp Med. 1991 Apr 1;173(4):841–847. doi: 10.1084/jem.173.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  7. Ferris S. D., Ritte U., Lindahl K. F., Prager E. M., Wilson A. C. Unusual type of mitochondrial DNA in mice lacking a maternally transmitted antigen. Nucleic Acids Res. 1983 May 11;11(9):2917–2926. doi: 10.1093/nar/11.9.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferris S. D., Sage R. D., Prager E. M., Ritte U., Wilson A. C. Mitochondrial DNA evolution in mice. Genetics. 1983 Nov;105(3):681–721. doi: 10.1093/genetics/105.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischer Lindahl K., Bocchieri M., Riblet R. Maternally transmitted target antigen for unrestricted killing by NZB T lymphocytes. J Exp Med. 1980 Dec 1;152(6):1583–1595. doi: 10.1084/jem.152.6.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fischer Lindahl K., Hermel E., Loveland B. E., Wang C. R. Maternally transmitted antigen of mice: a model transplantation antigen. Annu Rev Immunol. 1991;9:351–372. doi: 10.1146/annurev.iy.09.040191.002031. [DOI] [PubMed] [Google Scholar]
  11. Gadaleta G., Pepe G., De Candia G., Quagliariello C., Sbisà E., Saccone C. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol. 1989 Jun;28(6):497–516. doi: 10.1007/BF02602930. [DOI] [PubMed] [Google Scholar]
  12. Gordon R. D., Simpson E., Samelson L. E. In vitro cell-mediated immune responses to the male specific(H-Y) antigen in mice. J Exp Med. 1975 Nov 1;142(5):1108–1120. doi: 10.1084/jem.142.5.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Günther E., Wurst W. Cytotoxic T lymphocytes of the rat are predominantly restricted by RT1.A and not RT1.C-determined major histocompatibility class I antigens. Immunogenetics. 1984;20(1):1–12. doi: 10.1007/BF00373442. [DOI] [PubMed] [Google Scholar]
  14. Han A. C., Rodgers J. R., Rich R. R. An unexpectedly labile mitochondrially encoded protein is required for Mta expression. Immunogenetics. 1989;29(4):258–264. doi: 10.1007/BF00717910. [DOI] [PubMed] [Google Scholar]
  15. Harding A. E. The mitochondrial genome--breaking the magic circle. N Engl J Med. 1989 May 18;320(20):1341–1343. doi: 10.1056/NEJM198905183202009. [DOI] [PubMed] [Google Scholar]
  16. Hayashi J. I., Yonekawa H., Gotoh O., Watanabe J., Tagashira Y. Strictly maternal inheritance of rat mitochondrial DNA. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1032–1038. doi: 10.1016/0006-291x(78)91499-7. [DOI] [PubMed] [Google Scholar]
  17. Hayashi J., Yonekawa H., Gotoh O., Motohashi J., Tagashira Y. Two different molecular types of rat mitochondrial DNAs. Biochem Biophys Res Commun. 1978 Apr 14;81(3):871–877. doi: 10.1016/0006-291x(78)91432-8. [DOI] [PubMed] [Google Scholar]
  18. Hünig T., Wallny H. J., Hartley J. K., Lawetzky A., Tiefenthaler G. A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes. J Exp Med. 1989 Jan 1;169(1):73–86. doi: 10.1084/jem.169.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ishikawa H., Dutton R. W. Characterization of the target antigen of F1 anti-parent cytotoxic lympholysis: analysis of the spontaneous in vitro F1 cytotoxic T lymphocytes. J Immunol. 1980 Aug;125(2):656–662. [PubMed] [Google Scholar]
  20. John P. Mitochondrial regulation of cell surface components in relation to carcinogenesis. J Theor Biol. 1984 Oct 5;110(3):377–381. doi: 10.1016/s0022-5193(84)80180-0. [DOI] [PubMed] [Google Scholar]
  21. Kimura H., Wilson D. B. Anti-idiotypic cytotoxic T cells in rats with graft-versus-host disease. 1984 Mar 29-Apr 4Nature. 308(5958):463–464. doi: 10.1038/308463a0. [DOI] [PubMed] [Google Scholar]
  22. Kosmatopoulos K., Algara D. S., Orbach-Arbouys S. Anti-receptor anti-MHC cytotoxic T lymphocytes: their role in the resistance to graft vs host reaction. J Immunol. 1987 Feb 15;138(4):1038–1041. [PubMed] [Google Scholar]
  23. Kotin R. M., Dubin D. T. Sequences around the 3'-end of a ribosomal RNA gene of hamster mitochondria. Further support for the 'transcriptional attenuation' model. Biochim Biophys Acta. 1984 May 15;782(1):106–108. doi: 10.1016/0167-4781(84)90112-x. [DOI] [PubMed] [Google Scholar]
  24. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Krawetz S. A., Pon R. T., Dixon G. H. Increased efficiency of the Taq polymerase catalyzed polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25;17(2):819–819. doi: 10.1093/nar/17.2.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kroon A. M., Pepe G., Bakker H., Holtrop M., Bollen J. E., Van Bruggen E. F., Cantatore P., Terpstra P., Saccone C. The restriction fragment map of rat-liver mitochondrial DNA: a reconsideration. Biochim Biophys Acta. 1977 Sep 20;478(2):128–145. doi: 10.1016/0005-2787(77)90177-0. [DOI] [PubMed] [Google Scholar]
  27. Lindahl K. F., Hausmann B., Chapman V. M. A new H-2-linked class I gene whose expression depends on a maternally inherited factor. Nature. 1983 Nov 24;306(5941):383–385. doi: 10.1038/306383a0. [DOI] [PubMed] [Google Scholar]
  28. Lindahl K. F., Hausmann B., Robinson P. J., Guénet J. L., Wharton D. C., Winking H. Mta, the maternally transmitted antigen, is determined jointly by the chromosomal Hmt and the extrachromosomal Mtf genes. J Exp Med. 1986 Feb 1;163(2):334–346. doi: 10.1084/jem.163.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lindahl K. F., Langhorne J. Medial histocompatibility antigens. Scand J Immunol. 1981 Dec;14(6):643–654. doi: 10.1111/j.1365-3083.1981.tb00607.x. [DOI] [PubMed] [Google Scholar]
  30. Loveland B., Wang C. R., Yonekawa H., Hermel E., Lindahl K. F. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell. 1990 Mar 23;60(6):971–980. doi: 10.1016/0092-8674(90)90345-f. [DOI] [PubMed] [Google Scholar]
  31. Nakano K., Nakamura I., Cudkowicz G. Generation of F1 hybrid cytotoxic T lymphocytes specific for self H-2. Nature. 1981 Feb 12;289(5798):559–563. doi: 10.1038/289559a0. [DOI] [PubMed] [Google Scholar]
  32. Palca J. The other human genome. Science. 1990 Sep 7;249(4973):1104–1105. doi: 10.1126/science.2204113. [DOI] [PubMed] [Google Scholar]
  33. Richards S., Bucan M., Brorson K., Kiefer M. C., Hunt S. W., 3rd, Lehrach H., Lindahl K. F. Genetic and molecular mapping of the Hmt region of mouse. EMBO J. 1989 Dec 1;8(12):3749–3757. doi: 10.1002/j.1460-2075.1989.tb08551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saccone C., Cantatore P., Gadaleta G., Gallerani R., Lanave C., Pepe G., Kroon A. M. The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria. Nucleic Acids Res. 1981 Aug 25;9(16):4139–4148. doi: 10.1093/nar/9.16.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shawar S. M., Cook R. G., Rodgers J. R., Rich R. R. Specialized functions of MHC class I molecules. I. An N-formyl peptide receptor is required for construction of the class I antigen Mta. J Exp Med. 1990 Mar 1;171(3):897–912. doi: 10.1084/jem.171.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shearer G. M., Cudkowicz G. Induction of F1 hybrid antiparent cytotoxic effector cells: an in vitro model for hemopoietic histoincompatibility. Science. 1975 Nov 28;190(4217):890–893. doi: 10.1126/science.1188368. [DOI] [PubMed] [Google Scholar]
  39. Shearer G. M., Garbarino C. A., Cudkowicz G. In vitro induction of F1 hybrid anti-parent cell-mediated cytotoxicity. J Immunol. 1976 Sep;117(3):754–759. [PubMed] [Google Scholar]
  40. Shoubridge E. A., Karpati G., Hastings K. E. Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell. 1990 Jul 13;62(1):43–49. doi: 10.1016/0092-8674(90)90238-a. [DOI] [PubMed] [Google Scholar]
  41. Stephenson S. P., Morley R. C., Butcher G. W. Genetics of the rat CT system: its apparent complexity is a consequence of cross-reactivity between the distinct MHC class I antigens RT1.C and RT1.A. J Immunogenet. 1985 Apr;12(2):101–114. doi: 10.1111/j.1744-313x.1985.tb00836.x. [DOI] [PubMed] [Google Scholar]
  42. Wallace D. C. Mitochondrial DNA mutations and neuromuscular disease. Trends Genet. 1989 Jan;5(1):9–13. doi: 10.1016/0168-9525(89)90005-x. [DOI] [PubMed] [Google Scholar]
  43. Wallny H. J., Rammensee H. G. Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature. 1990 Jan 18;343(6255):275–278. doi: 10.1038/343275a0. [DOI] [PubMed] [Google Scholar]
  44. Wang Y. Double-stranded DNA sequencing with T7 polymerase. Biotechniques. 1988 Oct;6(9):843–845. [PubMed] [Google Scholar]
  45. Whittam T. S., Clark A. G., Stoneking M., Cann R. L., Wilson A. C. Allelic variation in human mitochondrial genes based on patterns of restriction site polymorphism. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9611–9615. doi: 10.1073/pnas.83.24.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zeviani M., Servidei S., Gellera C., Bertini E., DiMauro S., DiDonato S. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature. 1989 May 25;339(6222):309–311. doi: 10.1038/339309a0. [DOI] [PubMed] [Google Scholar]
  47. de Vos W. M., Bakker H., Saccone C., Kroon A. M. Further analysis of the type differences of rat-liver mitochondrial DNA. Biochim Biophys Acta. 1980 Mar 28;607(1):1–9. doi: 10.1016/0005-2787(80)90215-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES