Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Apr 1;173(4):923–930. doi: 10.1084/jem.173.4.923

Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes

PMCID: PMC2190815  PMID: 2007858

Abstract

Peripheral blood monocytes can be induced by stimuli such as bacterial lipopolysaccharide (LPS) to secrete an array of cytokines. We have studied the effects of interleukin 7 (IL-7) on human peripheral blood mononuclear cells (PBMC) and found that IL-7 is a relatively potent inducer of IL-6 secretion IL-6 protein levels were determined either by the B9 hybridoma growth factor assay or by enzyme-linked immunosorbent assay, and mRNA for IL-6 was analyzed by Northern hybridization. Detailed examination revealed that, among PBMC, monocytes, rather than lymphocytes, were secreting IL-6 in response to IL-7. In contrast to the low concentrations of IL-7 required to stimulate T cell growth and differentiation (as low as 0.1 ng/ml), relatively high concentrations of IL-7 were necessary to induce IL-6 secretion by monocytes (at least 10 ng/ml). An optimal concentration of IL-7 (100 ng/ml) induced monocytes to secrete 10-fold more IL-6 than an optimal concentration of IL-1 beta (10 ng/ml), and almost as much as LPS. However, significantly more IL-7 than IL-1 beta was required to induce detectable levels of IL- 6. The kinetics of IL-6 secretion by monocytes were identical in response to IL-7, IL-1 beta, or LPS, with IL-6 protein detectable in culture supernatants as early as 2 h after the initiation of culture. IL-4 was found to markedly inhibit the ability of IL-7 or LPS to induce IL-6 mRNA and IL-6 secretion. In addition to promoting IL-6 production, IL-7 induced the secretion of immunoreactive IL-1 alpha, IL-1 beta, and tumor necrosis factor alpha (TNF-alpha) by monocytes. IL-7 also induced monocyte/macrophage tumoricidal activity against a human melanoma cell target, an activity that may be related to the secretion of IL-1 alpha, IL-1 beta, and TNF-alpha. Finally, we used a whole blood culture system as a bridge to in vivo analysis to demonstrate that IL-7 induces cytokine secretion in the absence of culture medium, fetal calf serum, and adherence to plastic. Our data suggest that IL-7, in addition to regulating lymphocyte growth and differentiation, has potent effects on cells of the monocytic lineage. Thus, IL-7 may be an important mediator in inflammation and in the macrophage immune response to tumors.

Full Text

The Full Text of this article is available as a PDF (948.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarden L. A., De Groot E. R., Schaap O. L., Lansdorp P. M. Production of hybridoma growth factor by human monocytes. Eur J Immunol. 1987 Oct;17(10):1411–1416. doi: 10.1002/eji.1830171004. [DOI] [PubMed] [Google Scholar]
  2. Alderson M. R., Sassenfeld H. M., Widmer M. B. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. J Exp Med. 1990 Aug 1;172(2):577–587. doi: 10.1084/jem.172.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armitage R. J., Namen A. E., Sassenfeld H. M., Grabstein K. H. Regulation of human T cell proliferation by IL-7. J Immunol. 1990 Feb 1;144(3):938–941. [PubMed] [Google Scholar]
  4. Beutler B., Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature. 1986 Apr 17;320(6063):584–588. doi: 10.1038/320584a0. [DOI] [PubMed] [Google Scholar]
  5. Cannistra S. A., Rambaldi A., Spriggs D. R., Herrmann F., Kufe D., Griffin J. D. Human granulocyte-macrophage colony-stimulating factor induces expression of the tumor necrosis factor gene by the U937 cell line and by normal human monocytes. J Clin Invest. 1987 Jun;79(6):1720–1728. doi: 10.1172/JCI113012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chazen G. D., Pereira G. M., LeGros G., Gillis S., Shevach E. M. Interleukin 7 is a T-cell growth factor. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5923–5927. doi: 10.1073/pnas.86.15.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Decker T., Lohmann-Matthes M. L., Gifford G. E. Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J Immunol. 1987 Feb 1;138(3):957–962. [PubMed] [Google Scholar]
  9. Dinarello C. A. An update on human interleukin-1: from molecular biology to clinical relevance. J Clin Immunol. 1985 Sep;5(5):287–297. doi: 10.1007/BF00918247. [DOI] [PubMed] [Google Scholar]
  10. Dinarello C. A., Cannon J. G., Wolff S. M., Bernheim H. A., Beutler B., Cerami A., Figari I. S., Palladino M. A., Jr, O'Connor J. V. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med. 1986 Jun 1;163(6):1433–1450. doi: 10.1084/jem.163.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Essner R., Rhoades K., McBride W. H., Morton D. L., Economou J. S. IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J Immunol. 1989 Jun 1;142(11):3857–3861. [PubMed] [Google Scholar]
  12. Gibbons R., Martinez O., Matli M., Heinzel F., Bernstein M., Warren R. Recombinant IL-4 inhibits IL-6 synthesis by adherent peripheral blood cells in vitro. Lymphokine Res. 1990 Fall;9(3):283–293. [PubMed] [Google Scholar]
  13. Goodwin R. G., Friend D., Ziegler S. F., Jerzy R., Falk B. A., Gimpel S., Cosman D., Dower S. K., March C. J., Namen A. E. Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell. 1990 Mar 23;60(6):941–951. doi: 10.1016/0092-8674(90)90342-c. [DOI] [PubMed] [Google Scholar]
  14. Grabstein K. H., Namen A. E., Shanebeck K., Voice R. F., Reed S. G., Widmer M. B. Regulation of T cell proliferation by IL-7. J Immunol. 1990 Apr 15;144(8):3015–3020. [PubMed] [Google Scholar]
  15. Grabstein K. H., Urdal D. L., Tushinski R. J., Mochizuki D. Y., Price V. L., Cantrell M. A., Gillis S., Conlon P. J. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 1986 Apr 25;232(4749):506–508. doi: 10.1126/science.3083507. [DOI] [PubMed] [Google Scholar]
  16. Hart P. H., Vitti G. F., Burgess D. R., Whitty G. A., Piccoli D. S., Hamilton J. A. Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A. 1989 May;86(10):3803–3807. doi: 10.1073/pnas.86.10.3803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirano T., Taga T., Yasukawa K., Nakajima K., Nakano N., Takatsuki F., Shimizu M., Murashima A., Tsunasawa S., Sakiyama F. Human B-cell differentiation factor defined by an anti-peptide antibody and its possible role in autoantibody production. Proc Natl Acad Sci U S A. 1987 Jan;84(1):228–231. doi: 10.1073/pnas.84.1.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horii Y., Muraguchi A., Suematsu S., Matsuda T., Yoshizaki K., Hirano T., Kishimoto T. Regulation of BSF-2/IL-6 production by human mononuclear cells. Macrophage-dependent synthesis of BSF-2/IL-6 by T cells. J Immunol. 1988 Sep 1;141(5):1529–1535. [PubMed] [Google Scholar]
  19. Ichinose Y., Bakouche O., Tsao J. Y., Fidler I. J. Tumor necrosis factor and IL-1 associated with plasma membranes of activated human monocytes lyse monokine-sensitive but not monokine-resistant tumor cells whereas viable activated monocytes lyse both. J Immunol. 1988 Jul 15;141(2):512–518. [PubMed] [Google Scholar]
  20. Kato K., Yokoi T., Takano N., Kanegane H., Yachie A., Miyawaki T., Taniguchi N. Detection by in situ hybridization and phenotypic characterization of cells expressing IL-6 mRNA in human stimulated blood. J Immunol. 1990 Feb 15;144(4):1317–1322. [PubMed] [Google Scholar]
  21. Kleinerman E. S., Schroit A. J., Fogler W. E., Fidler I. J. Tumoricidal activity of human monocytes activated in vitro by free and liposome-encapsulated human lymphokines. J Clin Invest. 1983 Jul;72(1):304–315. doi: 10.1172/JCI110970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lynch D. H., Miller R. E. Induction of murine lymphokine-activated killer cells by recombinant IL-7. J Immunol. 1990 Sep 15;145(6):1983–1990. [PubMed] [Google Scholar]
  23. Morrissey P. J., Bressler L., Charrier K., Alpert A. Response of resident murine peritoneal macrophages to in vivo administration of granulocyte-macrophage colony-stimulating factor. J Immunol. 1988 Mar 15;140(6):1910–1915. [PubMed] [Google Scholar]
  24. Morrissey P. J., Goodwin R. G., Nordan R. P., Anderson D., Grabstein K. H., Cosman D., Sims J., Lupton S., Acres B., Reed S. G. Recombinant interleukin 7, pre-B cell growth factor, has costimulatory activity on purified mature T cells. J Exp Med. 1989 Mar 1;169(3):707–716. doi: 10.1084/jem.169.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Namen A. E., Schmierer A. E., March C. J., Overell R. W., Park L. S., Urdal D. L., Mochizuki D. Y. B cell precursor growth-promoting activity. Purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med. 1988 Mar 1;167(3):988–1002. doi: 10.1084/jem.167.3.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Onozaki K., Matsushima K., Kleinerman E. S., Saito T., Oppenheim J. J. Role of interleukin 1 in promoting human monocyte-mediated tumor cytotoxicity. J Immunol. 1985 Jul;135(1):314–320. [PubMed] [Google Scholar]
  27. Park L. S., Friend D. J., Schmierer A. E., Dower S. K., Namen A. E. Murine interleukin 7 (IL-7) receptor. Characterization on an IL-7-dependent cell line. J Exp Med. 1990 Apr 1;171(4):1073–1089. doi: 10.1084/jem.171.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Standiford T. J., Strieter R. M., Chensue S. W., Westwick J., Kasahara K., Kunkel S. L. IL-4 inhibits the expression of IL-8 from stimulated human monocytes. J Immunol. 1990 Sep 1;145(5):1435–1439. [PubMed] [Google Scholar]
  29. Strieter R. M., Remick D. G., Ham J. M., Colletti L. M., Lynch J. P., 3rd, Kunkel S. L. Tumor necrosis factor-alpha gene expression in human whole blood. J Leukoc Biol. 1990 Apr;47(4):366–370. doi: 10.1002/jlb.47.4.366. [DOI] [PubMed] [Google Scholar]
  30. Turner M., Chantry D., Feldmann M. Transforming growth factor beta induces the production of interleukin 6 by human peripheral blood mononuclear cells. Cytokine. 1990 May;2(3):211–216. doi: 10.1016/1043-4666(90)90018-o. [DOI] [PubMed] [Google Scholar]
  31. Ueno Y., Takano N., Kanegane H., Yokoi T., Yachie A., Miyawaki T., Taniguchi N. The acute phase nature of interleukin 6: studies in Kawasaki disease and other febrile illnesses. Clin Exp Immunol. 1989 Jun;76(3):337–342. [PMC free article] [PubMed] [Google Scholar]
  32. Urban J. L., Shepard H. M., Rothstein J. L., Sugarman B. J., Schreiber H. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5233–5237. doi: 10.1073/pnas.83.14.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Urdal D. L., Mochizuki D., Conlon P. J., March C. J., Remerowski M. L., Eisenman J., Ramthun C., Gillis S. Lymphokine purification by reversed-phase high-performance liquid chromatography. J Chromatogr. 1984 Jul 27;296:171–179. doi: 10.1016/s0021-9673(01)96410-6. [DOI] [PubMed] [Google Scholar]
  34. Van Oers M. H., Van der Heyden A. A., Aarden L. A. Interleukin 6 (IL-6) in serum and urine of renal transplant recipients. Clin Exp Immunol. 1988 Feb;71(2):314–319. [PMC free article] [PubMed] [Google Scholar]
  35. Widmer M. B., Acres R. B., Sassenfeld H. M., Grabstein K. H. Regulation of cytolytic cell populations from human peripheral blood by B cell stimulatory factor 1 (interleukin 4). J Exp Med. 1987 Nov 1;166(5):1447–1455. doi: 10.1084/jem.166.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES