Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1991 Jun 1;173(6):1473–1482. doi: 10.1084/jem.173.6.1473

IgM anti-Fc gamma R autoantibodies trigger neutrophil degranulation

PMCID: PMC2190825  PMID: 1827827

Abstract

Anti-Fc gamma R IgM monoclonal antibodies (mAbs) isolated from lipopolysaccharide-stimulated spleen cells from tightskin (TSK) mice were found to be polyspecific, reacting with a wide variety of molecules, including double-stranded DNA, topoisomerase, RNA polymerase, and different collagen types. Approximately 60% of the polyspecific IgM mAbs have anti-Fc gamma R specificity. These anti-Fc gamma R mAbs induce the release of hydrolases from both azurophil and specific granules of human neutrophils. 25-45% of the total cellular content (determined in Nonidet P-40 lysates) of neutrophil elastase, 10- 25% of beta-glucuronidase, and 30-50% of alkaline phosphatase was released after incubation with the mAbs. The degranulation process was accompanied by dramatic morphological changes shown by scanning and transmission electron microscopy. The release of hydrolytic enzymes stimulated by the IgM anti-Fc gamma R mAbs was inhibited by preincubation of neutrophils with Fab fragments of either anti-human Fc gamma RII (IV.3) or anti-human Fc gamma RIII (3G8) mAbs. The binding of the anti-Fc gamma R TSK mAbs to human neutrophils was inhibited by Fab fragments of mAb 3G8. However, we found that the TSK anti-Fc gamma R mAbs do not bind to human Fc gamma RII expressed in either CHO cells or the P388D1 mouse macrophage cell line. Since the enzyme release could be inhibited by Fab fragments of mAb IV.3, we suggest that the signal transduction may require Fc gamma RII activation subsequent to crosslinking of the glycan phosphatidyl inositol-anchored Fc gamma RIII- 1. These data demonstrate for the first time that polyspecific autoantibodies with Fc gamma R specificity can trigger neutrophil enzyme release via human Fc gamma RIII-1 in vitro and indicate a possible role for such autoantibodies in autoimmune inflammatory processes.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avrameas S., Guilbert B., Mahana W., Matsiota P., Ternynck T. Recognition of self and non-self constituents by polyspecific autoreceptors. Int Rev Immunol. 1988 Mar;3(1-2):1–15. doi: 10.3109/08830188809051179. [DOI] [PubMed] [Google Scholar]
  3. Bamezai A., Goldmacher V., Reiser H., Rock K. L. Internalization of phosphatidylinositol-anchored lymphocyte proteins. I. Documentation and potential significance for T cell stimulation. J Immunol. 1989 Nov 15;143(10):3107–3116. [PubMed] [Google Scholar]
  4. Bamezai A., Reiser H., Rock K. L. T cell receptor/CD3 negative variants are unresponsive to stimulation through the Ly-6 encoded molecule, TAP. J Immunol. 1988 Sep 1;141(5):1423–1428. [PubMed] [Google Scholar]
  5. Boros P., Chen J. M., Bona C., Unkeless J. C. Autoimmune mice make anti-Fc gamma receptor antibodies. J Exp Med. 1990 May 1;171(5):1581–1595. doi: 10.1084/jem.171.5.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brooks D. G., Qiu W. Q., Luster A. D., Ravetch J. V. Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. J Exp Med. 1989 Oct 1;170(4):1369–1385. doi: 10.1084/jem.170.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ceuppens J. L., Bloemmen F. J., Van Wauwe J. P. T cell unresponsiveness to the mitogenic activity of OKT3 antibody results from a deficiency of monocyte Fc gamma receptors for murine IgG2a and inability to cross-link the T3-Ti complex. J Immunol. 1985 Dec;135(6):3882–3886. [PubMed] [Google Scholar]
  8. Douvas A. S., Achten M., Tan E. M. Identification of a nuclear protein (Scl-70) as a unique target of human antinuclear antibodies in scleroderma. J Biol Chem. 1979 Oct 25;254(20):10514–10522. [PubMed] [Google Scholar]
  9. English D., Andersen B. R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods. 1974 Aug;5(3):249–252. doi: 10.1016/0022-1759(74)90109-4. [DOI] [PubMed] [Google Scholar]
  10. Fleit H. B., Wright S. D., Unkeless J. C. Human neutrophil Fc gamma receptor distribution and structure. Proc Natl Acad Sci U S A. 1982 May;79(10):3275–3279. doi: 10.1073/pnas.79.10.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frank M. M., Lawley T. J., Hamburger M. I., Brown E. J. NIH Conference: Immunoglobulin G Fc receptor-mediated clearance in autoimmune diseases. Ann Intern Med. 1983 Feb;98(2):206–218. doi: 10.7326/0003-4819-98-2-218. [DOI] [PubMed] [Google Scholar]
  12. Glinski W., Tigalonowa M., Jablonska S., Janczura E. Decreased extracellular release of granule enzymes from in vitro-stimulated polymorphonuclear leukocytes in guttate psoriasis. Inflammation. 1986 Jun;10(2):99–108. doi: 10.1007/BF00915992. [DOI] [PubMed] [Google Scholar]
  13. Gresham H. D., Zheleznyak A., Mormol J. S., Brown E. J. Studies on the molecular mechanisms of human neutrophil Fc receptor-mediated phagocytosis. Evidence that a distinct pathway for activation of the respiratory burst results in reactive oxygen metabolite-dependent amplification of ingestion. J Biol Chem. 1990 May 15;265(14):7819–7826. [PubMed] [Google Scholar]
  14. Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gunter K. C., Germain R. N., Kroczek R. A., Saito T., Yokoyama W. M., Chan C., Weiss A., Shevach E. M. Thy-1-mediated T-cell activation requires co-expression of CD3/Ti complex. Nature. 1987 Apr 2;326(6112):505–507. doi: 10.1038/326505a0. [DOI] [PubMed] [Google Scholar]
  16. Harper J. W., Cook R. R., Roberts C. J., McLaughlin B. J., Powers J. C. Active site mapping of the serine proteases human leukocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and II. Bovine chymotrypsin A alpha, and Staphylococcus aureus protease V-8 using tripeptide thiobenzyl ester substrates. Biochemistry. 1984 Jun 19;23(13):2995–3002. doi: 10.1021/bi00308a023. [DOI] [PubMed] [Google Scholar]
  17. Hibbs M. L., Bonadonna L., Scott B. M., McKenzie I. F., Hogarth P. M. Molecular cloning of a human immunoglobulin G Fc receptor. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2240–2244. doi: 10.1073/pnas.85.7.2240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirata Y., Taga T., Hibi M., Nakano N., Hirano T., Kishimoto T. Characterization of IL-6 receptor expression by monoclonal and polyclonal antibodies. J Immunol. 1989 Nov 1;143(9):2900–2906. [PubMed] [Google Scholar]
  19. Huizinga T. W., Dolman K. M., van der Linden N. J., Kleijer M., Nuijens J. H., von dem Borne A. E., Roos D. Phosphatidylinositol-linked FcRIII mediates exocytosis of neutrophil granule proteins, but does not mediate initiation of the respiratory burst. J Immunol. 1990 Feb 15;144(4):1432–1437. [PubMed] [Google Scholar]
  20. Huizinga T. W., Kerst M., Nuyens J. H., Vlug A., von dem Borne A. E., Roos D., Tetteroo P. A. Binding characteristics of dimeric IgG subclass complexes to human neutrophils. J Immunol. 1989 Apr 1;142(7):2359–2364. [PubMed] [Google Scholar]
  21. Jimenez S. A., Millan A., Bashey R. I. Scleroderma-like alterations in collagen metabolism occurring in the TSK (tight skin) mouse. Arthritis Rheum. 1984 Feb;27(2):180–185. doi: 10.1002/art.1780270209. [DOI] [PubMed] [Google Scholar]
  22. Jimenez S. A., Williams C. J., Myers J. C., Bashey R. I. Increased collagen biosynthesis and increased expression of type I and type III procollagen genes in tight skin (TSK) mouse fibroblasts. J Biol Chem. 1986 Jan 15;261(2):657–662. [PubMed] [Google Scholar]
  23. Kasturi K., Monestier M., Mayer R., Bona C. Biased usage of certain Vk gene families by autoantibodies and their polymorphism in autoimmune mice. Mol Immunol. 1988 Feb;25(2):213–219. doi: 10.1016/0161-5890(88)90070-3. [DOI] [PubMed] [Google Scholar]
  24. Kimberly R. P., Ahlstrom J. W., Click M. E., Edberg J. C. The glycosyl phosphatidylinositol-linked Fc gamma RIIIPMN mediates transmembrane signaling events distinct from Fc gamma RII. J Exp Med. 1990 Apr 1;171(4):1239–1255. doi: 10.1084/jem.171.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lalezari P., Khorshidi M., Petrosova M. Autoimmune neutropenia of infancy. J Pediatr. 1986 Nov;109(5):764–769. doi: 10.1016/s0022-3476(86)80690-4. [DOI] [PubMed] [Google Scholar]
  26. Miller J., Malek T. R., Leonard W. J., Greene W. C., Shevach E. M., Germain R. N. Nucleotide sequence and expression of a mouse interleukin 2 receptor cDNA. J Immunol. 1985 Jun;134(6):4212–4217. [PubMed] [Google Scholar]
  27. Mitchell P. J., Carothers A. M., Han J. H., Harding J. D., Kas E., Venolia L., Chasin L. A. Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite-strand exon in the 5' region of the CHO dhfr gene. Mol Cell Biol. 1986 Feb;6(2):425–440. doi: 10.1128/mcb.6.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neuwirth R., Singhal P., Diamond B., Hays R. M., Lobmeyer L., Clay K., Schlondorff D. Evidence for immunoglobulin Fc receptor-mediated prostaglandin2 and platelet-activating factor formation by cultured rat mesangial cells. J Clin Invest. 1988 Sep;82(3):936–944. doi: 10.1172/JCI113701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Petroni K. C., Shen L., Guyre P. M. Modulation of human polymorphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated functions by IFN-gamma and glucocorticoids. J Immunol. 1988 May 15;140(10):3467–3472. [PubMed] [Google Scholar]
  30. Qu Z. X., Odin J., Glass J. D., Unkeless J. C. Expression and characterization of a truncated murine Fc gamma receptor. J Exp Med. 1988 Mar 1;167(3):1195–1210. doi: 10.1084/jem.167.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roberts W. L., Myher J. J., Kuksis A., Low M. G., Rosenberry T. L. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J Biol Chem. 1988 Dec 15;263(35):18766–18775. [PubMed] [Google Scholar]
  33. Russell P. J., Steinberg A. D. Studies of peritoneal macrophage function in mice with systemic lupus erythematosus: depressed phagocytosis of opsonized sheep erythrocytes in vitro. Clin Immunol Immunopathol. 1983 Jun;27(3):387–402. doi: 10.1016/0090-1229(83)90091-0. [DOI] [PubMed] [Google Scholar]
  34. Salmon J. E., Kapur S., Kimberly R. P. Opsonin-independent ligation of Fc gamma receptors. The 3G8-bearing receptors on neutrophils mediate the phagocytosis of concanavalin A-treated erythrocytes and nonopsonized Escherichia coli. J Exp Med. 1987 Dec 1;166(6):1798–1813. doi: 10.1084/jem.166.6.1798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Santiago A., Satriano J., DeCandido S., Holthofer H., Schreiber R., Unkeless J., Schlondorff D. A specific Fc gamma receptor on cultured rat mesangial cells. J Immunol. 1989 Oct 15;143(8):2575–2582. [PubMed] [Google Scholar]
  36. Schmitt-Verhulst A. M., Guimezanes A., Boyer C., Poenie M., Tsien R., Buferne M., Hua C., Leserman L. Pleiotropic loss of activation pathways in a T-cell receptor alpha-chain deletion variant of a cytolytic T-cell clone. Nature. 1987 Feb 12;325(6105):628–631. doi: 10.1038/325628a0. [DOI] [PubMed] [Google Scholar]
  37. Schwartz R. S. Polyvalent anti-DNA autoantibodies: immunochemical and biological significance. Int Rev Immunol. 1988 Mar;3(1-2):97–115. doi: 10.3109/08830188809051184. [DOI] [PubMed] [Google Scholar]
  38. Sipos A., Csortos C., Sipka S., Gergely P., Sonkoly I., Szegedi G. The antigen/receptor specificity of antigranulocyte antibodies in patients with SLE. Immunol Lett. 1988 Dec;19(4):329–334. doi: 10.1016/0165-2478(88)90163-0. [DOI] [PubMed] [Google Scholar]
  39. Thompson L. F., Ruedi J. M., Glass A., Low M. G., Lucas A. H. Antibodies to 5'-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol. 1989 Sep 15;143(6):1815–1821. [PubMed] [Google Scholar]
  40. Thomson L. F., Ruedi J. M., Glass A., Moldenhauer G., Moller P., Low M. G., Klemens M. R., Massaia M., Lucas A. H. Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5'-nucleotidase (CD73). Tissue Antigens. 1990 Jan;35(1):9–19. doi: 10.1111/j.1399-0039.1990.tb01750.x. [DOI] [PubMed] [Google Scholar]
  41. Tosi M. F., Berger M. Functional differences between the 40 kDa and 50 to 70 kDa IgG Fc receptors on human neutrophils revealed by elastase treatment and antireceptor antibodies. J Immunol. 1988 Sep 15;141(6):2097–2103. [PubMed] [Google Scholar]
  42. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yeh E. T., Reiser H., Bamezai A., Rock K. L. TAP transcription and phosphatidylinositol linkage mutants are defective in activation through the T cell receptor. Cell. 1988 Mar 11;52(5):665–674. doi: 10.1016/0092-8674(88)90404-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES