Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Mar 1;177(3):613–620. doi: 10.1084/jem.177.3.613

Changes in the repertoire of peptides bound to HLA-B27 subtypes and to site-specific mutants inside and outside pocket B

PMCID: PMC2190930  PMID: 8436905

Abstract

HLA-B27 subtypes share many structural features, including their pocket B, which interacts with a conserved Arg residue at the second position of B*2705-bound peptides. Subtypes differ among each other at other locations in the peptide binding site. In this study, metabolic labeling and radiochemical pool sequencing were used to address the following issues: (a) presence of the Arg 2 (R2) motif among peptides bound to the various HLA-B27 subtypes; (b) influence of mutations inside and outside pocket B on this motif; and (c) the degree of similarity among the peptide pools bound to the various B27 subtypes. Sequencing of Arg-labeled peptide pools extracted from B*2701 to B*2706, and from two site-directed mutants of B*2705 with changes outside pocket B, indicated that all of these molecules bind peptides with Arg at position 2. Peptides from several mutants with changes altering the structure of pocket B, and from one mutant at the pocket B rim, also retained the R2 motif. However, this was absent in the peptide pool extracted from the M45 mutant, in which the negative charge of pocket B, conferred to HLA-B27 by Glu45, was canceled. These results indicate that alterations outside pocket B, and even disruption of the network of hydrogen bonds that stabilizes Arg binding in pocket B, do not impair binding of peptides bearing the R2 motif, but a nonconservative substitution at position 45 does. As a substantial fraction of anti-B*2705 cytotoxic T lymphocyte (CTL) clones crossreact with the M45 mutant (Villadangos, J., B. Galocha, D. Lopez, V. Calvo, and J. A. Lopez de Castro. 1992. J. Immunol. 149:505) this result suggest that determinant mimicry by nonidentical peptides may frequently account for unexpected CTL crossreactions. Metabolic labeling with various other amino acids and radiochemical sequencing revealed similarities, but also substantial differences, among the peptide pools from the various HLA-B27 subtypes. This strongly suggests that many peptides bind to multiple subtypes, but significant subsets of peptides bound to a given HLA-B27 subtype do not bind to other subtypes or do so with greatly altered efficiency. These results indicate the importance of polymorphism outside pocket B in modulating peptide binding to HLA-B27.

Full Text

The Full Text of this article is available as a PDF (726.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio P., Jaraquemada D., Rojo S., López de Castro J. A. Clonal heterogeneity of HLA-B27 cellular allorecognition. Delineation of immunodominant sites. Eur J Immunol. 1988 Feb;18(2):203–209. doi: 10.1002/eji.1830180204. [DOI] [PubMed] [Google Scholar]
  2. Benjamin R., Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990 Apr;11(4):137–142. doi: 10.1016/0167-5699(90)90051-a. [DOI] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  5. Buxton S. E., Benjamin R. J., Clayberger C., Parham P., Krensky A. M. Anchoring pockets in human histocompatibility complex leukocyte antigen (HLA) class I molecules: analysis of the conserved B ("45") pocket of HLA-B27. J Exp Med. 1992 Mar 1;175(3):809–820. doi: 10.1084/jem.175.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calvo V., Rojo S., López D., Galocha B., López de Castro J. A. Structure and diversity of HLA-B27-specific T cell epitopes. Analysis with site-directed mutants mimicking HLA-B27 subtype polymorphism. J Immunol. 1990 May 15;144(10):4038–4045. [PubMed] [Google Scholar]
  7. Ellis S. A., Taylor C., McMichael A. Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol. 1982 Aug;5(1):49–59. doi: 10.1016/0198-8859(82)90030-1. [DOI] [PubMed] [Google Scholar]
  8. Ezquerra A., Doménech N., van der Poel J., Strominger J. L., Vega M. A., López de Castro J. A. Molecular analysis of an HLA-A2 functional variant CLA defined by cytolytic T lymphocytes. J Immunol. 1986 Sep 1;137(5):1642–1649. [PubMed] [Google Scholar]
  9. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  10. Fremont D. H., Matsumura M., Stura E. A., Peterson P. A., Wilson I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science. 1992 Aug 14;257(5072):919–927. doi: 10.1126/science.1323877. [DOI] [PubMed] [Google Scholar]
  11. Garrett T. P., Saper M. A., Bjorkman P. J., Strominger J. L., Wiley D. C. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature. 1989 Dec 7;342(6250):692–696. doi: 10.1038/342692a0. [DOI] [PubMed] [Google Scholar]
  12. Hunt D. F., Henderson R. A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A. L., Appella E., Engelhard V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992 Mar 6;255(5049):1261–1263. doi: 10.1126/science.1546328. [DOI] [PubMed] [Google Scholar]
  13. Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
  14. López de Castro J. A. HLA-B27 and HLA-A2 subtypes: structure, evolution and function. Immunol Today. 1989 Jul;10(7):239–246. doi: 10.1016/0167-5699(89)90261-2. [DOI] [PubMed] [Google Scholar]
  15. López D., Rojo S., Calvo V., López de Castro J. A. Peptide-presenting similarities among functionally distant HLA-B27 subtypes revealed by alloreactive T lymphocytes of unusual specificity. J Immunol. 1992 Feb 15;148(4):996–1002. [PubMed] [Google Scholar]
  16. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature. 1991 Sep 26;353(6342):321–325. doi: 10.1038/353321a0. [DOI] [PubMed] [Google Scholar]
  17. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell. 1992 Sep 18;70(6):1035–1048. doi: 10.1016/0092-8674(92)90252-8. [DOI] [PubMed] [Google Scholar]
  18. Matsumura M., Fremont D. H., Peterson P. A., Wilson I. A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science. 1992 Aug 14;257(5072):927–934. doi: 10.1126/science.1323878. [DOI] [PubMed] [Google Scholar]
  19. Parham P., Bodmer W. F. Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2. Nature. 1978 Nov 23;276(5686):397–399. doi: 10.1038/276397a0. [DOI] [PubMed] [Google Scholar]
  20. Rojo S., Aparicio P., Choo S. Y., Hansen J. A., López de Castro J. A. Structural analysis of an HLA-B27 population variant, B27f. Multiple patterns of amino acid changes within a single polypeptide segment generate polymorphism in HLA-B27. J Immunol. 1987 Aug 1;139(3):831–836. [PubMed] [Google Scholar]
  21. Rötzschke O., Falk K., Stevanović S., Jung G., Rammensee H. G. Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol. 1992 Sep;22(9):2453–2456. doi: 10.1002/eji.1830220940. [DOI] [PubMed] [Google Scholar]
  22. Saper M. A., Bjorkman P. J., Wiley D. C. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol. 1991 May 20;219(2):277–319. doi: 10.1016/0022-2836(91)90567-p. [DOI] [PubMed] [Google Scholar]
  23. Villadangos J. A., Galocha B., López D., Calvo V., López de Castro J. A. Role of binding pockets for amino-terminal peptide residues in HLA-B27 allorecognition. J Immunol. 1992 Jul 15;149(2):505–510. [PubMed] [Google Scholar]
  24. Villadangos J. A., Galocha B., López D., Calvo V., López de Castro J. A. Role of binding pockets for amino-terminal peptide residues in HLA-B27 allorecognition. J Immunol. 1992 Jul 15;149(2):505–510. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES