Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Mar 1;177(3):647–656. doi: 10.1084/jem.177.3.647

Retroviral transformation in vitro of chicken T cells expressing either alpha/beta or gamma/delta T cell receptors by reticuloendotheliosis virus strain T

PMCID: PMC2190938  PMID: 8382253

Abstract

Exposure of normal juvenile chicken bone marrow cells to the replication defective avian reticuloendotheliosis virus strain T (REV- T) (chicken syncytial virus [CSV]) in vitro resulted in the generation of transformed cell lines containing T cells. The transformed T cells derived from bone marrow included cells expressing either alpha/beta or gamma/delta T cell receptors (TCRs) in proportions roughly equivalent to the proportions of TCR-alpha/beta and TCR-gamma/delta T cells found in the normal bone marrow in vivo. Essentially all TCR-alpha/beta- expressing transformed bone marrow-derived T cells expressed CD8, whereas few, if any, expressed CD4. In contrast, among TCR-gamma/delta T cells, both CD8+ and CD8- cells were derived, all of which were CD4-. Exposure of ex vivo spleen cells to REV-T(CSV) yielded transformed polyclonal cell lines containing > 99% B cells. However, REV-T(CSV) infection of mitogen-activated spleen cells in vitro resulted in transformed populations containing predominantly T cells. This may be explained at least in part by in vitro activation resulting in dramatically increased levels of T cell REV-T(CSV) receptor expression. In contrast to REV-T(CSV)-transformed lines derived from normal bone marrow, transformed lines derived from activated spleen cells contained substantial numbers of CD4+ cells, all of which expressed TCR- alpha/beta. While transformed T cells derived from bone marrow were stable for extended periods of in vitro culture and were cloned from single cells, transformed T cells from activated spleen were not stable and could not be cloned. We have therefore dissociated the initial transformation of T cells with REV-T(CSV) from the requirements for long-term growth. These results provide the first demonstration of efficient in vitro transformation of chicken T lineage cells by REV- T(CSV). Since productive infection with REV-T(CSV) is not sufficient to promote long-term growth of transformed cells, these results further suggest that immortalization depends not only upon expression of the v- rel oncogene but also on intracellular factor(s) whose expression varies according to the state of T cell physiology and/or activation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barth C. F., Ewert D. L., Olson W. C., Humphries E. H. Reticuloendotheliosis virus REV-T(REV-A)-induced neoplasia: development of tumors within the T-lymphoid and myeloid lineages. J Virol. 1990 Dec;64(12):6054–6062. doi: 10.1128/jvi.64.12.6054-6062.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barth C. F., Humphries E. H. Expression of v-rel induces mature B-cell lines that reflect the diversity of avian immunoglobulin heavy- and light-chain rearrangements. Mol Cell Biol. 1988 Dec;8(12):5358–5368. doi: 10.1128/mcb.8.12.5358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benatar T., Iacampo S., Tkalec L., Ratcliffe M. J. Expression of immunoglobulin genes in the avian embryo bone marrow revealed by retroviral transformation. Eur J Immunol. 1991 Oct;21(10):2529–2536. doi: 10.1002/eji.1830211033. [DOI] [PubMed] [Google Scholar]
  4. Benatar T., Tkalec L., Ratcliffe M. J. Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7615–7619. doi: 10.1073/pnas.89.16.7615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beug H., Müller H., Grieser S., Doederlein G., Graf T. Hematopoietic cells transformed in vitro by REVT avian reticuloendotheliosis virus express characteristics of very immature lymphoid cells. Virology. 1981 Dec;115(2):295–309. doi: 10.1016/0042-6822(81)90112-4. [DOI] [PubMed] [Google Scholar]
  6. Bucy R. P., Chen C. L., Cooper M. D. Development of cytoplasmic CD3+/T cell receptor-negative cells in the peripheral lymphoid tissues of chickens. Eur J Immunol. 1990 Jun;20(6):1345–1350. doi: 10.1002/eji.1830200621. [DOI] [PubMed] [Google Scholar]
  7. Bucy R. P., Coltey M., Chen C. I., Char D., Le Douarin N. M., Cooper M. D. Cytoplasmic CD3+ surface CD8+ lymphocytes develop as a thymus-independent lineage in chick-quail chimeras. Eur J Immunol. 1989 Aug;19(8):1449–1455. doi: 10.1002/eji.1830190816. [DOI] [PubMed] [Google Scholar]
  8. Böhnlein E., Lowenthal J. W., Siekevitz M., Ballard D. W., Franza B. R., Greene W. C. The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell. 1988 Jun 3;53(5):827–836. doi: 10.1016/0092-8674(88)90099-2. [DOI] [PubMed] [Google Scholar]
  9. Capobianco A. J., Chang D., Mosialos G., Gilmore T. D. p105, the NF-kappa B p50 precursor protein, is one of the cellular proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. J Virol. 1992 Jun;66(6):3758–3767. doi: 10.1128/jvi.66.6.3758-3767.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chan M. M., Chen C. L., Ager L. L., Cooper M. D. Identification of the avian homologues of mammalian CD4 and CD8 antigens. J Immunol. 1988 Apr 1;140(7):2133–2138. [PubMed] [Google Scholar]
  11. Chen C. L., Ager L. L., Gartland G. L., Cooper M. D. Identification of a T3/T cell receptor complex in chickens. J Exp Med. 1986 Jul 1;164(1):375–380. doi: 10.1084/jem.164.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen C. L., Cihak J., Lösch U., Cooper M. D. Differential expression of two T cell receptors, TcR1 and TcR2, on chicken lymphocytes. Eur J Immunol. 1988 Apr;18(4):539–543. doi: 10.1002/eji.1830180408. [DOI] [PubMed] [Google Scholar]
  13. Chen I. S., Mak T. W., O'Rear J. J., Temin H. M. Characterization of reticuloendotheliosis virus strain T DNA and isolation of a novel variant of reticuloendotheliosis virus strain T by molecular cloning. J Virol. 1981 Dec;40(3):800–811. doi: 10.1128/jvi.40.3.800-811.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen L., Lim M. Y., Bose H., Jr, Bishop J. M. Rearrangements of chicken immunoglobulin genes in lymphoid cells transformed by the avian retroviral oncogene v-rel. Proc Natl Acad Sci U S A. 1988 Jan;85(2):549–553. doi: 10.1073/pnas.85.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis N., Ghosh S., Simmons D. L., Tempst P., Liou H. C., Baltimore D., Bose H. R., Jr Rel-associated pp40: an inhibitor of the rel family of transcription factors. Science. 1991 Sep 13;253(5025):1268–1271. doi: 10.1126/science.1891714. [DOI] [PubMed] [Google Scholar]
  16. Garson K., Kang C. Y. Mapping of the functional domains of the v-rel oncogene. Oncogene. 1990 Sep;5(9):1431–1434. [PubMed] [Google Scholar]
  17. Garson K., Percival H., Kang C. Y. The N-terminal env-derived amino acids of v-rel are required for full transforming activity. Virology. 1990 Jul;177(1):106–115. doi: 10.1016/0042-6822(90)90464-3. [DOI] [PubMed] [Google Scholar]
  18. Ghosh S., Gifford A. M., Riviere L. R., Tempst P., Nolan G. P., Baltimore D. Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell. 1990 Sep 7;62(5):1019–1029. doi: 10.1016/0092-8674(90)90276-k. [DOI] [PubMed] [Google Scholar]
  19. Gélinas C., Temin H. M. The v-rel oncogene encodes a cell-specific transcriptional activator of certain promoters. Oncogene. 1988 Oct;3(4):349–355. [PubMed] [Google Scholar]
  20. Hannink M., Temin H. M. Transactivation of gene expression by nuclear and cytoplasmic rel proteins. Mol Cell Biol. 1989 Oct;9(10):4323–4336. doi: 10.1128/mcb.9.10.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoelzer J. D., Franklin R. B., Bose H. R., Jr Transformation by reticuloendotheliosis virus: development of a focus assay and isolation of a nontransforming virus. Virology. 1979 Feb;93(1):20–30. doi: 10.1016/0042-6822(79)90272-1. [DOI] [PubMed] [Google Scholar]
  22. Lahti J. M., Chen C. L., Tjoelker L. W., Pickel J. M., Schat K. A., Calnek B. W., Thompson C. B., Cooper M. D. Two distinct alpha beta T-cell lineages can be distinguished by the differential usage of T-cell receptor V beta gene segments. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10956–10960. doi: 10.1073/pnas.88.23.10956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Le Douarin N. M., Jotereau F. V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J Exp Med. 1975 Jul 1;142(1):17–40. doi: 10.1084/jem.142.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lewis R. B., McClure J., Rup B., Niesel D. W., Garry R. F., Hoelzer J. D., Nazerian K., Bose H. R., Jr Avian reticuloendotheliosis virus: identification of the hematopoietic target cell for transformation. Cell. 1981 Aug;25(2):421–431. doi: 10.1016/0092-8674(81)90060-x. [DOI] [PubMed] [Google Scholar]
  25. Lim M. Y., Davis N., Zhang J. Y., Bose H. R., Jr The v-rel oncogene product is complexed with cellular proteins including its proto-oncogene product and heat shock protein 70. Virology. 1990 Mar;175(1):149–160. doi: 10.1016/0042-6822(90)90195-w. [DOI] [PubMed] [Google Scholar]
  26. Mussman H. C., Twiehaus M. J. Pathogenesis of reticuloendothelial virus disease in chicks--an acute runting syndrome. Avian Dis. 1971 Jul-Sep;15(3):483–502. [PubMed] [Google Scholar]
  27. Nolan G. P., Ghosh S., Liou H. C., Tempst P., Baltimore D. DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide. Cell. 1991 Mar 8;64(5):961–969. doi: 10.1016/0092-8674(91)90320-x. [DOI] [PubMed] [Google Scholar]
  28. Paramithiotis E., Tkalec L., Ratcliffe M. J. High levels of CD45 are coordinately expressed with CD4 and CD8 on avian thymocytes. J Immunol. 1991 Dec 1;147(11):3710–3717. [PubMed] [Google Scholar]
  29. Ratcliffe M. J., Coggeshall K. M., Newell M. K., Julius M. H. T cell receptor aggregation, but not dimerization, induces increased cytosolic calcium concentrations and reveals a lack of stable association between CD4 and the T cell receptor. J Immunol. 1992 Mar 15;148(6):1643–1651. [PubMed] [Google Scholar]
  30. Ratcliffe M. J., Tkalec L. Cross-linking of the surface immunoglobulin on lymphocytes from the bursa of Fabricius results in second messenger generation. Eur J Immunol. 1990 May;20(5):1073–1078. doi: 10.1002/eji.1830200519. [DOI] [PubMed] [Google Scholar]
  31. Rup B. J., Spence J. L., Hoelzer J. D., Lewis R. B., Carpenter C. R., Rubin A. S., Bose H. R., Jr Immunosuppression induced by avian reticuloendotheliosis virus: mechanism of induction of the suppressor cell. J Immunol. 1979 Sep;123(3):1362–1370. [PubMed] [Google Scholar]
  32. Schat K. A., Pratt W. D., Morgan R., Weinstock D., Calnek B. W. Stable transfection of reticuloendotheliosis virus-transformed lymphoblastoid cell lines. Avian Dis. 1992 Apr-Jun;36(2):432–439. [PubMed] [Google Scholar]
  33. Simek S., Rice N. R. p59v-rel, the transforming protein of reticuloendotheliosis virus, is complexed with at least four other proteins in transformed chicken lymphoid cells. J Virol. 1988 Dec;62(12):4730–4736. doi: 10.1128/jvi.62.12.4730-4736.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sowder J. T., Chen C. L., Ager L. L., Chan M. M., Cooper M. D. A large subpopulation of avian T cells express a homologue of the mammalian T gamma/delta receptor. J Exp Med. 1988 Feb 1;167(2):315–322. doi: 10.1084/jem.167.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stephens R. M., Rice N. R., Hiebsch R. R., Bose H. R., Jr, Gilden R. V. Nucleotide sequence of v-rel: the oncogene of reticuloendotheliosis virus. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6229–6233. doi: 10.1073/pnas.80.20.6229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Theilen G. H., Zeigel R. F., Twiehaus M. J. Biological studies with RE virus (strain T) that induces reticuloendotheliosis in turkeys, chickens, and Japanese quail. J Natl Cancer Inst. 1966 Dec;37(6):731–743. [PubMed] [Google Scholar]
  37. Tjoelker L. W., Carlson L. M., Lee K., Lahti J., McCormack W. T., Leiden J. M., Chen C. L., Cooper M. D., Thompson C. B. Evolutionary conservation of antigen recognition: the chicken T-cell receptor beta chain. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7856–7860. doi: 10.1073/pnas.87.20.7856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vainio O., Riwar B., Brown M. H., Lassila O. Characterization of the putative avian CD2 homologue. J Immunol. 1991 Sep 1;147(5):1593–1599. [PubMed] [Google Scholar]
  39. Vainio O., Veromaa T., Eerola E., Toivanen P., Ratcliffe M. J. Antigen-presenting cell-T cell interaction in the chicken is MHC class II antigen restricted. J Immunol. 1988 May 1;140(9):2864–2868. [PubMed] [Google Scholar]
  40. Veillette A., Ratcliffe M. J. Avian CD4 and CD8 interact with a cellular tyrosine protein kinase homologous to mammalian p56lck. Eur J Immunol. 1991 Feb;21(2):397–401. doi: 10.1002/eji.1830210222. [DOI] [PubMed] [Google Scholar]
  41. Veromaa T., Vainio O., Eerola E., Toivanen P. Monoclonal antibodies against chicken Bu-1a and Bu-1b alloantigens. Hybridoma. 1988 Feb;7(1):41–48. doi: 10.1089/hyb.1988.7.41. [DOI] [PubMed] [Google Scholar]
  42. Veromaa T., Vainio O., Jalkanen S., Eerola E., Granfors K., Toivanen P. Expression of B-L and Bu-1 antigens in chickens bursectomized at 60 h of incubation. Eur J Immunol. 1988 Feb;18(2):225–230. doi: 10.1002/eji.1830180207. [DOI] [PubMed] [Google Scholar]
  43. Wilhelmsen K. C., Eggleton K., Temin H. M. Nucleic acid sequences of the oncogene v-rel in reticuloendotheliosis virus strain T and its cellular homolog, the proto-oncogene c-rel. J Virol. 1984 Oct;52(1):172–182. doi: 10.1128/jvi.52.1.172-182.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilhelmsen K. C., Temin H. M. Structure and dimorphism of c-rel (turkey), the cellular homolog to the oncogene of reticuloendotheliosis virus strain T. J Virol. 1984 Feb;49(2):521–529. doi: 10.1128/jvi.49.2.521-529.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamamoto N., Okada M., Koyanagi Y., Kannagi M., Hinuma Y. Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line. Science. 1982 Aug 20;217(4561):737–739. doi: 10.1126/science.6980467. [DOI] [PubMed] [Google Scholar]
  46. Yelton D. E., Desaymard C., Scharff M. D. Use of monoclonal anti-mouse immunoglobulin to detect mouse antibodies. Hybridoma. 1981;1(1):5–11. doi: 10.1089/hyb.1.1981.1.5. [DOI] [PubMed] [Google Scholar]
  47. Zhang J. Y., Bargmann W., Bose H. R., Jr Rearrangement and diversification of immunoglobulin light-chain genes in lymphoid cells transformed by reticuloendotheliosis virus. Mol Cell Biol. 1989 Nov;9(11):4970–4976. doi: 10.1128/mcb.9.11.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang J. Y., Olson W., Ewert D., Bargmann W., Bose H. R., Jr The v-rel oncogene of avian reticuloendotheliosis virus transforms immature and mature lymphoid cells of the B cell lineage in vitro. Virology. 1991 Aug;183(2):457–466. doi: 10.1016/0042-6822(91)90975-h. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES