Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Jul;163(1):174–179. doi: 10.1128/jb.163.1.174-179.1985

Mitomycin-induced lethality of Escherichia coli cells containing the ColE1 Plasmid: involvement of the kil gene.

S P Zhang, A Faro, G Zubay
PMCID: PMC219095  PMID: 3924892

Abstract

Escherichia coli cells containing the ColE1 plasmid or related plasmids are killed by considerably lower levels of mitomycin C (MTC) than are plasmid-free cells. Since exposure to MTC induces high levels of synthesis of the plasmid-encoded colicin toxin, it was originally thought that the killing effect was due to the increased levels of colicin. This possibility was discounted when it was shown that deletion mutations in the plasmid lacking most of the colicin (cea) gene still sensitized host cells to MTC. Only when the region containing the cea gene promoter was deleted did the killing effect disappear. This led to the suggestion that transcription originating from the cea gene promoter and not the colicin protein itself was required for killing. Transcription-blocking mutations in the cea gene support this suggestion. It was proposed that there is a gene (kil) located downstream from the cea gene in the same operon that is responsible for MTC killing and colicin transport. The precise location of the kil gene in ColE1 can be predicted by piecing together published sequence information. We used available sequence data to construct a number of well-defined plasmid mutants to further examine the relevance of transcription from the cea promoter and the kil gene to drug-induced killing and colicin transport. The most informative mutant had a small insertion in the kil gene. This mutant behaved as predicted; cells containing it had a greatly lowered sensitivity to MTC and were severely inhibited in the transport of colicin.

Full text

PDF
174

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brey R. N. Fragmentation of colicins A and E1 by cell surface proteases. J Bacteriol. 1982 Jan;149(1):306–315. doi: 10.1128/jb.149.1.306-315.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen H. Z., Zubay G. Analysis of ColE1 expression in vitro after chromosome fragmentation. J Bacteriol. 1983 May;154(2):650–655. doi: 10.1128/jb.154.2.650-655.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dougan G., Sherratt D. The transposon Tn1 as a probe for studying ColE1 structure and function. Mol Gen Genet. 1977 Mar 7;151(2):151–160. doi: 10.1007/BF00338689. [DOI] [PubMed] [Google Scholar]
  4. Ebina Y., Nakazawa A. Cyclic AMP-dependent initiation and rho-dependent termination of colicin E1 gene transcription. J Biol Chem. 1983 Jun 10;258(11):7072–7078. [PubMed] [Google Scholar]
  5. Ebina Y., Takahara Y., Kishi F., Nakazawa A., Brent R. LexA protein is a repressor of the colicin E1 gene. J Biol Chem. 1983 Nov 10;258(21):13258–13261. [PubMed] [Google Scholar]
  6. Hakkaart M. J., Veltkamp E., Nijkamp H. J. Protein H encoded by plasmid Clo DF13 involved in lysis of the bacterial host. I. Localisation of the gene and identification and subcellular localisation of the gene H product. Mol Gen Genet. 1981;183(2):318–325. doi: 10.1007/BF00270635. [DOI] [PubMed] [Google Scholar]
  7. Hakkaart M. J., Veltkamp E., Nijkamp H. J. Protein H encoded by plasmid Clo DF13 involved in lysis of the bacterial host. II. Functions and regulation of synthesis of the gene H product. Mol Gen Genet. 1981;183(2):326–332. doi: 10.1007/BF00270636. [DOI] [PubMed] [Google Scholar]
  8. Inselburg J. Studies of colicin induction with an imm- col+ mutant of the plasmid colicin E1. Mol Gen Genet. 1979 Jun 20;173(3):333–338. doi: 10.1007/BF00268644. [DOI] [PubMed] [Google Scholar]
  9. Krueger J. H., Elledge S. J., Walker G. C. Isolation and characterization of Tn5 insertion mutations in the lexA gene of Escherichia coli. J Bacteriol. 1983 Mar;153(3):1368–1378. doi: 10.1128/jb.153.3.1368-1378.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. doi: 10.1016/0092-8674(82)90085-x. [DOI] [PubMed] [Google Scholar]
  11. OZEKI H., STOCKER B. A., DE MARGERIE H. Production of colicine by single bacteria. Nature. 1959 Aug 1;184:337–339. doi: 10.1038/184337a0. [DOI] [PubMed] [Google Scholar]
  12. Oka A., Nomura N., Morita M., Sugisaki H., Sugimoto K., Takanami M. Nucleotide sequence of small ColE1 derivatives: structure of the regions essential for autonomous replication and colicin E1 immunity. Mol Gen Genet. 1979 May 4;172(2):151–159. doi: 10.1007/BF00268276. [DOI] [PubMed] [Google Scholar]
  13. Patient R. K. Characterization of in vitro transcription initiation and termination sites in Col E1 DNA. Nucleic Acids Res. 1979 Jun 25;6(8):2647–2665. doi: 10.1093/nar/6.8.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sabik J. F., Suit J. L., Luria S. E. cea-kil operon of the ColE1 plasmid. J Bacteriol. 1983 Mar;153(3):1479–1485. doi: 10.1128/jb.153.3.1479-1485.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shafferman A., Cohen S., Flashner Y. A DNA segment within the colicin E1 structural gene on ColE1 affecting immunity to colicin. Mol Gen Genet. 1978 Sep 8;164(3):259–264. doi: 10.1007/BF00333155. [DOI] [PubMed] [Google Scholar]
  16. Shafferman A., Flashner Y., Cohen S. ColE1 DNA sequences interacting in cis, essential for mitomycin-C induced lethality. Mol Gen Genet. 1979 Oct 2;176(1):139–146. doi: 10.1007/BF00334305. [DOI] [PubMed] [Google Scholar]
  17. Spangler R., Zhang S. P., Krueger J., Zubay G. Colicin synthesis and cell death. J Bacteriol. 1985 Jul;163(1):167–173. doi: 10.1128/jb.163.1.167-173.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Suit J. L., Fan M. L., Sabik J. F., Labarre R., Luria S. E. Alternative forms of lethality in mitomycin C-induced bacteria carrying ColE1 plasmids. Proc Natl Acad Sci U S A. 1983 Jan;80(2):579–583. doi: 10.1073/pnas.80.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tessman E. S., Peterson P. K. tif-dependent induction of colicin E1, prophage lambda, and filamentation in Escherichia coli K-12. J Bacteriol. 1980 Sep;143(3):1307–1317. doi: 10.1128/jb.143.3.1307-1317.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamada M., Ebina Y., Miyata T., Nakazawa T., Nakazawa A. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc Natl Acad Sci U S A. 1982 May;79(9):2827–2831. doi: 10.1073/pnas.79.9.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yamada M., Miki T., Nakazawa A. Translocation of colicin E1 through cytoplasmic membrane of Escherichia coli. FEBS Lett. 1982 Dec 27;150(2):465–468. doi: 10.1016/0014-5793(82)80790-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES