Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Apr 1;177(4):881–889. doi: 10.1084/jem.177.4.881

Mercury-induced autoreactive anti-class II T cell line protects from experimental autoimmune encephalomyelitis by the bias of CD8+ antiergotypic cells in Lewis rats

PMCID: PMC2190974  PMID: 8096239

Abstract

Brown-Norway (BN) rats injected with HgCl2 develop a systemic autoimmune disease associated with a polyclonal B cell activation, due to autoreactive T cells specific for self-class II molecules, while Lewis (LEW) rats injected with HgCl2 do not exhibit autoimmunity and develop a non-antigen-specific, CD8-mediated immunosuppression assessed by a depression of T cell functions, and a protection against experimental autoimmune encephalomyelitis (EAE). Resistance to HgCl2- induced autoimmunity is not due to these suppressor cells since treatment with an anti-CD8 monoclonal antibody (mAb) did not allow autoimmunity to appear. The absence of autoimmunity in this strain could result from the absence of autoreactive T cells, or from quantitative or qualitative differences of these cells between susceptible and resistant strains. In the present study, we show that CD4+ anti-class II T cells are present in HgCl2-injected LEW rats and are as frequent as in BN rats when assessed by limiting dilution analysis. LEW CD4+ autoreactive T cell lines were derived. They proliferated in the presence of normal class II-bearing cells, secreted interleukin 2, and did not induce B cells to produce immunoglobulins. Transfer of one of these lines, LEW Hg A, into normal LEW rats led to the appearance of CD8+ cells responsible for a non-antigen-specific immunosuppression that induced complete protection from EAE. Immunosuppression was abrogated after treatment with an anti-CD8 mAb. In vitro, CD8+ cells from rats injected with the LEW Hg A T cell line proliferated in the presence of activated T cells whatever their origin. We conclude that HgCl2 induces CD4+ autoreactive T cells that proliferate in the presence of class II+ cells in susceptible BN as well as in resistant LEW rats. But while these cells collaborate with B cells to produce autoantibodies in BN rats, they initiate in LEW rats a suppressor circuit involving antiergotypic CD8+ suppressor cells.

Full Text

The Full Text of this article is available as a PDF (855.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay A. N. The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology. 1981 Apr;42(4):593–600. [PMC free article] [PubMed] [Google Scholar]
  2. Bloom B. R., Salgame P., Diamond B. Revisiting and revising suppressor T cells. Immunol Today. 1992 Apr;13(4):131–136. doi: 10.1016/0167-5699(92)90110-S. [DOI] [PubMed] [Google Scholar]
  3. Brideau R. J., Carter P. B., McMaster W. R., Mason D. W., Williams A. F. Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol. 1980 Aug;10(8):609–615. doi: 10.1002/eji.1830100807. [DOI] [PubMed] [Google Scholar]
  4. Cohen I. R. Regulation of autoimmune disease physiological and therapeutic. Immunol Rev. 1986 Dec;94:5–21. doi: 10.1111/j.1600-065x.1986.tb01161.x. [DOI] [PubMed] [Google Scholar]
  5. Del Prete G. F., De Carli M., Ricci M., Romagnani S. Helper activity for immunoglobulin synthesis of T helper type 1 (Th1) and Th2 human T cell clones: the help of Th1 clones is limited by their cytolytic capacity. J Exp Med. 1991 Oct 1;174(4):809–813. doi: 10.1084/jem.174.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Druet E., Sapin C., Günther E., Feingold N., Druet P. Mercuric chloride-induced anti-glomerular basement membrane antibodies in the rat: genetic control. Eur J Immunol. 1977 Jun;7(6):348–351. doi: 10.1002/eji.1830070605. [DOI] [PubMed] [Google Scholar]
  7. Dubey C., Bellon B., Druet P. TH1 and TH2 dependent cytokines in experimental autoimmunity and immune reactions induced by chemicals. Eur Cytokine Netw. 1991 May-Jun;2(3):147–152. [PubMed] [Google Scholar]
  8. Faherty D. A., Johnson D. R., Zauderer M. Origin and specificity of autoreactive T cells in antigen-induced populations. J Exp Med. 1985 Jun 1;161(6):1293–1301. doi: 10.1084/jem.161.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukumoto T., McMaster W. R., Williams A. F. Mouse monoclonal antibodies against rat major histocompatibility antigens. Two Ia antigens and expression of Ia and class I antigens in rat thymus. Eur J Immunol. 1982 Mar;12(3):237–243. doi: 10.1002/eji.1830120313. [DOI] [PubMed] [Google Scholar]
  10. Hirsch F., Couderc J., Sapin C., Fournie G., Druet P. Polyclonal effect of HgCl2 in the rat, its possible role in an experimental autoimmune disease. Eur J Immunol. 1982 Jul;12(7):620–625. doi: 10.1002/eji.1830120716. [DOI] [PubMed] [Google Scholar]
  11. Hisatsune T., Enomoto A., Nishijima K., Minai Y., Asano Y., Tada T., Kaminogawa S. CD8+ suppressor T cell clone capable of inhibiting the antigen- and anti-T cell receptor-induced proliferation of Th clones without cytolytic activity. J Immunol. 1990 Oct 15;145(8):2421–2426. [PubMed] [Google Scholar]
  12. Janeway C. A. Autoimmune disease: immunotherapy by peptides? Nature. 1989 Oct 12;341(6242):482–483. doi: 10.1038/341482a0. [DOI] [PubMed] [Google Scholar]
  13. Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol. 1991 Feb 15;146(4):1163–1168. [PubMed] [Google Scholar]
  14. Lider O., Karin N., Shinitzky M., Cohen I. R. Therapeutic vaccination against adjuvant arthritis using autoimmune T cells treated with hydrostatic pressure. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4577–4580. doi: 10.1073/pnas.84.13.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lider O., Reshef T., Beraud E., Ben-Nun A., Cohen I. R. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science. 1988 Jan 8;239(4836):181–183. doi: 10.1126/science.2447648. [DOI] [PubMed] [Google Scholar]
  16. Lohse A. W., Mor E., Reshef T., Meyer zum Büschenfelde K. H., Cohen I. R. Inhibition of the mixed lymphocyte reaction by T cell vaccination. Eur J Immunol. 1990 Nov;20(11):2521–2524. doi: 10.1002/eji.1830201126. [DOI] [PubMed] [Google Scholar]
  17. Lohse A. W., Mor F., Karin N., Cohen I. R. Control of experimental autoimmune encephalomyelitis by T cells responding to activated T cells. Science. 1989 May 19;244(4906):820–822. doi: 10.1126/science.2471264. [DOI] [PubMed] [Google Scholar]
  18. McMaster W. R., Williams A. F. Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol. 1979 Jun;9(6):426–433. doi: 10.1002/eji.1830090603. [DOI] [PubMed] [Google Scholar]
  19. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  20. Nagarkatti P. S., Nagarkatti M., Mann L. W., Jones L. A., Kaplan A. M. Characterization of an endogenous Lyt2+ T-suppressor-cell population regulating autoreactive T cells in vitro and in vivo. Cell Immunol. 1988 Mar;112(1):64–77. doi: 10.1016/0008-8749(88)90276-6. [DOI] [PubMed] [Google Scholar]
  21. Nagarkatti P. S., Snow E. C., Kaplan A. M. Characterization and function of autoreactive T-lymphocyte clones isolated from normal, unprimed mice. Cell Immunol. 1985 Aug;94(1):32–48. doi: 10.1016/0008-8749(85)90083-8. [DOI] [PubMed] [Google Scholar]
  22. Ochel M., Vohr H. W., Pfeiffer C., Gleichmann E. IL-4 is required for the IgE and IgG1 increase and IgG1 autoantibody formation in mice treated with mercuric chloride. J Immunol. 1991 May 1;146(9):3006–3011. [PubMed] [Google Scholar]
  23. Paterson D. J., Jefferies W. A., Green J. R., Brandon M. R., Corthesy P., Puklavec M., Williams A. F. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987 Dec;24(12):1281–1290. doi: 10.1016/0161-5890(87)90122-2. [DOI] [PubMed] [Google Scholar]
  24. Pelletier L., Galceran M., Pasquier R., Ronco P., Verroust P., Bariety J., Druet P. Down modulation of Heymann's nephritis by mercuric chloride. Kidney Int. 1987 Aug;32(2):227–232. doi: 10.1038/ki.1987.196. [DOI] [PubMed] [Google Scholar]
  25. Pelletier L., Pasquier R., Rossert J., Vial M. C., Mandet C., Druet P. Autoreactive T cells in mercury-induced autoimmunity. Ability to induce the autoimmune disease. J Immunol. 1988 Feb 1;140(3):750–754. [PubMed] [Google Scholar]
  26. Pelletier L., Rossert J., Pasquier R., Villarroya H., Belair M. F., Vial M. C., Oriol R., Druet P. Effect of HgCl2 on experimental allergic encephalomyelitis in Lewis rats. HgCl2-induced down-modulation of the disease. Eur J Immunol. 1988 Feb;18(2):243–247. doi: 10.1002/eji.1830180210. [DOI] [PubMed] [Google Scholar]
  27. Pelletier L., Rossert J., Pasquier R., Villarroya H., Belair M. F., Vial M. C., Oriol R., Druet P. Effect of HgCl2 on experimental allergic encephalomyelitis in Lewis rats. HgCl2-induced down-modulation of the disease. Eur J Immunol. 1988 Feb;18(2):243–247. doi: 10.1002/eji.1830180210. [DOI] [PubMed] [Google Scholar]
  28. Pelletier L., Rossert J., Pasquier R., Villarroya H., Oriol R., Druet P. HgCl2-induced perturbation of the T cell network in experimental allergic encephalomyelitis. II. In vivo demonstration of the role of T suppressor and contrasuppressor cells. Cell Immunol. 1991 Oct 15;137(2):379–388. doi: 10.1016/0008-8749(91)90087-r. [DOI] [PubMed] [Google Scholar]
  29. Romain P. L., Morimoto C., Daley J. F., Palley L. S., Reinherz E. L., Schlossman S. F. Reactivity of inducer cell subsets and T8-cell activation during the human autologous mixed lymphocyte reaction. Clin Immunol Immunopathol. 1984 Jan;30(1):117–128. doi: 10.1016/0090-1229(84)90012-6. [DOI] [PubMed] [Google Scholar]
  30. Rossert J., Pelletier L., Pasquier R., Druet P. Autoreactive T cells in mercury-induced autoimmunity. Demonstration by limiting dilution analysis. Eur J Immunol. 1988 Nov;18(11):1761–1766. doi: 10.1002/eji.1830181116. [DOI] [PubMed] [Google Scholar]
  31. Sano K., Fujisawa I., Abe R., Asano Y., Tada T. MHC-restricted minimal regulatory circuit initiated by a class II-autoreactive T cell clone. J Exp Med. 1987 May 1;165(5):1284–1295. doi: 10.1084/jem.165.5.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sapin C., Hirsch F., Delaporte J. P., Bazin H., Druet P. Polyclonal IgE increase after HgCl2 injections in BN and LEW rats: a genetic analysis. Immunogenetics. 1984;20(3):227–236. doi: 10.1007/BF00364205. [DOI] [PubMed] [Google Scholar]
  33. Spickett G. P., Brandon M. R., Mason D. W., Williams A. F., Woollett G. R. MRC OX-22, a monoclonal antibody that labels a new subset of T lymphocytes and reacts with the high molecular weight form of the leukocyte-common antigen. J Exp Med. 1983 Sep 1;158(3):795–810. doi: 10.1084/jem.158.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sun D., Ben-Nun A., Wekerle H. Regulatory circuits in autoimmunity: recruitment of counter-regulatory CD8+ T cells by encephalitogenic CD4+ T line cells. Eur J Immunol. 1988 Dec;18(12):1993–1999. doi: 10.1002/eji.1830181219. [DOI] [PubMed] [Google Scholar]
  35. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  36. Vandenbark A. A., Hashim G., Offner H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature. 1989 Oct 12;341(6242):541–544. doi: 10.1038/341541a0. [DOI] [PubMed] [Google Scholar]
  37. Zhang J. W., Schreurs M., Medaer R., Raus J. C. Regulation of myelin basic protein-specific helper T cells in multiple sclerosis: generation of suppressor T cell lines. Cell Immunol. 1992 Jan;139(1):118–130. doi: 10.1016/0008-8749(92)90105-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES