Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Apr 1;177(4):989–998. doi: 10.1084/jem.177.4.989

Melanoma cells and normal melanocytes share antigens recognized by HLA- A2-restricted cytotoxic T cell clones from melanoma patients

PMCID: PMC2190978  PMID: 8459226

Abstract

HLA-A2-restricted, CD3+, CD8+, alpha/beta+ cytotoxic T cell (CTL) clones were isolated from peripheral blood (PBL) or tumor infiltrating lymphocytes (TIL) of two HLA-A2+ melanoma patients (9742 and 5810), to evaluate the possible recognition of autologous melanoma and of allogeneic HLA-A2-matched normal melanocytes. These CTL clones lysed not only fresh and cultured autologous melanoma cells, but also allogeneic HLA-A2+, but not HLA-A2-, normal melanocytes. The lysis of autologous neoplastic cells and of melanocytes could be inhibited by an anti-HLA-A2 monoclonal antibody (mAb). Lysis of the normal melanocytes was not dependent on the presence of human or fetal calf serum in the culture medium. HLA-A2-restricted CTL clones recognized not only proliferating melanocytes cultured in complete melanocyte medium, but also melanocytes made quiescent by culture for up to 6 d in a basal medium devoid of exogenous factors such as phorbol ester (O- tetradecanoyl phorbol 13-acetate [TPA]), epidermal growth factor, insulin, and pituitary extracts. Analysis of specificity of four CTL clones (A75, A83, A94, and 119) from patient 9742, performed on a panel of 39 targets, indicated that the three HLA-A2-restricted CTL (A75, A83, and A94) lysed all but one of nine allogeneic melanomas expressing the HLA-A2 molecule with no reactivity on nine HLA-A2- allogeneic melanomas. Only a few instances of borderline reactivity were seen by the same effectors on 21 targets of nonmelanocyte lineage, including 12 carcinomas of different histology, four Epstein-Barr virus-transformed B cells (lymphoblastoid cell lines [LCL]), including the autologous LCL, four lines of normal fibroblasts, and normal kidney cells. Lack of reactivity on allogeneic targets of nonmelanocyte lineage occurred in spite of expression of HLA-A2 on 14 of these targets as determined by conventional tissue typing and cytofluorimetric analysis with four different anti-HLA-A2 mAb. These data indicate that tissue-related antigens can be expressed on normal and neoplastic cells of the melanocyte lineage and can be recognized in association with HLA-A2 by CTL clones from melanoma patients.

Full Text

The Full Text of this article is available as a PDF (955.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anichini A., Mazzocchi A., Fossati G., Parmiani G. Cytotoxic T lymphocyte clones from peripheral blood and from tumor site detect intratumor heterogeneity of melanoma cells. Analysis of specificity and mechanisms of interaction. J Immunol. 1989 May 15;142(10):3692–3701. [PubMed] [Google Scholar]
  2. Bühring H. J., Ullrich A., Schaudt K., Müller C. A., Busch F. W. The product of the proto-oncogene c-kit (P145c-kit) is a human bone marrow surface antigen of hemopoietic precursor cells which is expressed on a subset of acute non-lymphoblastic leukemic cells. Leukemia. 1991 Oct;5(10):854–860. [PubMed] [Google Scholar]
  3. Crowley N. J., Darrow T. L., Quinn-Allen M. A., Seigler H. F. MHC-restricted recognition of autologous melanoma by tumor-specific cytotoxic T cells. Evidence for restriction by a dominant HLA-A allele. J Immunol. 1991 Mar 1;146(5):1692–1699. [PubMed] [Google Scholar]
  4. Dippold W. G., Lloyd K. O., Li L. T., Ikeda H., Oettgen H. F., Old L. J. Cell surface antigens of human malignant melanoma: definition of six antigenic systems with mouse monoclonal antibodies. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6114–6118. doi: 10.1073/pnas.77.10.6114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dustin M. L., Springer T. A. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol. 1988 Jul;107(1):321–331. doi: 10.1083/jcb.107.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  7. Fernandez-Viña M. A., Falco M., Sun Y., Stastny P. DNA typing for HLA class I alleles: I. Subsets of HLA-A2 and of -A28. Hum Immunol. 1992 Mar;33(3):163–173. doi: 10.1016/0198-8859(92)90068-x. [DOI] [PubMed] [Google Scholar]
  8. Herlyn M., Rodeck U., Mancianti M., Cardillo F. M., Lang A., Ross A. H., Jambrosic J., Koprowski H. Expression of melanoma-associated antigens in rapidly dividing human melanocytes in culture. Cancer Res. 1987 Jun 15;47(12):3057–3061. [PubMed] [Google Scholar]
  9. Houghton A. N., Albino A. P., Cordon-Cardo C., Davis L. J., Eisinger M. Cell surface antigens of human melanocytes and melanoma. Expression of adenosine deaminase binding protein is extinguished with melanocyte transformation. J Exp Med. 1988 Jan 1;167(1):197–212. doi: 10.1084/jem.167.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Houghton A. N., Real F. X., Davis L. J., Cordon-Cardo C., Old L. J. Phenotypic heterogeneity of melanoma. Relation to the differentiation program of melanoma cells. J Exp Med. 1987 Mar 1;165(3):812–829. doi: 10.1084/jem.165.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jung S., Schluesener H. J. Human T lymphocytes recognize a peptide of single point-mutated, oncogenic ras proteins. J Exp Med. 1991 Jan 1;173(1):273–276. doi: 10.1084/jem.173.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kawakami Y., Zakut R., Topalian S. L., Stötter H., Rosenberg S. A. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol. 1992 Jan 15;148(2):638–643. [PubMed] [Google Scholar]
  13. Kawamoto T., Sato J. D., Le A., Polikoff J., Sato G. H., Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1337–1341. doi: 10.1073/pnas.80.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knuth A., Wölfel T., Meyer zum Büschenfelde K. H. Cellular and humoral immune responses against cancer: implications for cancer vaccines. Curr Opin Immunol. 1991 Oct;3(5):659–664. doi: 10.1016/0952-7915(91)90093-g. [DOI] [PubMed] [Google Scholar]
  15. Krasagakis K., Garbe C., Krüger S., Orfanos C. E. Effects of interferons on cultured human melanocytes in vitro: interferon-beta but not-alpha or -gamma inhibit proliferation and all interferons significantly modulate the cell phenotype. J Invest Dermatol. 1991 Aug;97(2):364–372. doi: 10.1111/1523-1747.ep12480767. [DOI] [PubMed] [Google Scholar]
  16. Lampson L. A., Levy R. Two populations of Ia-like molecules on a human B cell line. J Immunol. 1980 Jul;125(1):293–299. [PubMed] [Google Scholar]
  17. Lanzavecchia A., Scheidegger D. The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol. 1987 Jan;17(1):105–111. doi: 10.1002/eji.1830170118. [DOI] [PubMed] [Google Scholar]
  18. Lassam N., Bickford S. Loss of c-kit expression in cultured melanoma cells. Oncogene. 1992 Jan;7(1):51–56. [PubMed] [Google Scholar]
  19. López de Castro J. A. HLA-B27 and HLA-A2 subtypes: structure, evolution and function. Immunol Today. 1989 Jul;10(7):239–246. doi: 10.1016/0167-5699(89)90261-2. [DOI] [PubMed] [Google Scholar]
  20. McMichael A. J., Parham P., Rust N., Brodsky F. A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17. Hum Immunol. 1980 Sep;1(2):121–129. doi: 10.1016/0198-8859(80)90099-3. [DOI] [PubMed] [Google Scholar]
  21. Mortarini R., Anichini A., Parmiani G. Heterogeneity for integrin expression and cytokine-mediated VLA modulation can influence the adhesion of human melanoma cells to extracellular matrix proteins. Int J Cancer. 1991 Feb 20;47(4):551–559. doi: 10.1002/ijc.2910470413. [DOI] [PubMed] [Google Scholar]
  22. Parham P., Barnstable C. J., Bodmer W. F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J Immunol. 1979 Jul;123(1):342–349. [PubMed] [Google Scholar]
  23. Parham P., Bodmer W. F. Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2. Nature. 1978 Nov 23;276(5686):397–399. doi: 10.1038/276397a0. [DOI] [PubMed] [Google Scholar]
  24. Parham P., Brodsky F. M. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol. 1981 Dec;3(4):277–299. doi: 10.1016/0198-8859(81)90065-3. [DOI] [PubMed] [Google Scholar]
  25. Parmiani G., Anichini A., Fossati G. Cellular immune response against autologous human malignant melanoma: are in vitro studies providing a framework for a more effective immunotherapy? J Natl Cancer Inst. 1990 Mar 7;82(5):361–370. doi: 10.1093/jnci/82.5.361. [DOI] [PubMed] [Google Scholar]
  26. Richards J. M., Mehta N., Ramming K., Skosey P. Sequential chemoimmunotherapy in the treatment of metastatic melanoma. J Clin Oncol. 1992 Aug;10(8):1338–1343. doi: 10.1200/JCO.1992.10.8.1338. [DOI] [PubMed] [Google Scholar]
  27. Russo C., Ng A. K., Pellegrino M. A., Ferrone S. The monoclonal antibody CR11-351 discriminates HLA-A2 variants identified by T cells. Immunogenetics. 1983;18(1):23–35. doi: 10.1007/BF00401353. [DOI] [PubMed] [Google Scholar]
  28. Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7489–7493. doi: 10.1073/pnas.79.23.7489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taswell C., MacDonald H. R., Cerottini J. C. Clonal analysis of cytolytic T lymphocyte specificity. I. Phenotypically distinct sets of clones as the cellular basis of cross-reactivity to alloantigens. J Exp Med. 1980 Jun 1;151(6):1372–1385. doi: 10.1084/jem.151.6.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomson T. M., Mattes M. J., Roux L., Old L. J., Lloyd K. O. Pigmentation-associated glycoprotein of human melanomas and melanocytes: definition with a mouse monoclonal antibody. J Invest Dermatol. 1985 Aug;85(2):169–174. doi: 10.1111/1523-1747.ep12276608. [DOI] [PubMed] [Google Scholar]
  31. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES