Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 May 1;177(5):1409–1420. doi: 10.1084/jem.177.5.1409

Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement- mediated lysis

PMCID: PMC2191001  PMID: 7683035

Abstract

We demonstrate here that CD59, an inhibitor of the membrane attack complex (MAC) of the complement system, is present in cell-free seminal plasma (SP) at a concentration of at least 20 micrograms/ml. Analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and Edman degradation indicated that this protein, SP CD59, was similar, if not identical, to CD59 isolated from erythrocyte (E) membranes (E CD59). Like purified E CD59, SP CD59 also possesses a glycosyl phosphatidyl inositol (GPI) anchor and incorporates into the membranes of heterologous cells where it inhibits lysis by the human MAC. This phenomenon could be demonstrated not only if cells were incubated with purified SP CD59 but also if unfractionated SP were used. Further, CD59 in unfractionated SP bound to washed spermatozoa, increasing their membrane content of the protein. The mechanism by which this protein retains its GPI anchor while apparently present in the fluid phase is of interest and was further investigated. Using the techniques of high-speed centrifugation, fast performance liquid chromatography fractionation, and electron microscopy, we found that all detectable SP CD59 was associated with vesicular extracellular organelles. These organelles, named "prostasomes," were previously known to be present in SP and to interact with spermatozoa, although their function was uncertain. Interaction of heterologous E with prostasomes rendered the cells more resistant to lysis by human MACs. We propose that these organelles represent a pool of CD59 from which protein lost from spermatozoa, perhaps as a result of low level complement attack or of normal membrane turnover, can be replenished.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraha A., Morgan B. P., Luzio J. P. The preparation and characterization of monoclonal antibodies to human complement component C8 and their use in purification of C8 and C8 subunits. Biochem J. 1988 Apr 1;251(1):285–292. doi: 10.1042/bj2510285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agrawal Y., Vanha-Perttula T. Effect of secretory particles in bovine seminal vesicle secretion on sperm motility and acrosome reaction. J Reprod Fertil. 1987 Mar;79(2):409–419. doi: 10.1530/jrf.0.0790409. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. J., Michaelson J. S., Johnson P. M. Trophoblast/leukocyte-common antigen is expressed by human testicular germ cells and appears on the surface of acrosome-reacted sperm. Biol Reprod. 1989 Aug;41(2):285–293. doi: 10.1095/biolreprod41.2.285. [DOI] [PubMed] [Google Scholar]
  4. Arvidson G., Ronquist G., Wikander G., Ojteg A. C. Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering. Biochim Biophys Acta. 1989 Sep 4;984(2):167–173. doi: 10.1016/0005-2736(89)90212-5. [DOI] [PubMed] [Google Scholar]
  5. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  6. Brody I., Ronquist G., Gottfries A. Ultrastructural localization of the prostasome - an organelle in human seminal plasma. Ups J Med Sci. 1983;88(2):63–80. doi: 10.3109/03009738309178440. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  8. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis B. K. Decapacitation and recapacitation of rabbit spermatozoa treated with membrane vesicles from seminal plasma. J Reprod Fertil. 1974 Nov;41(1):241–244. doi: 10.1530/jrf.0.0410241. [DOI] [PubMed] [Google Scholar]
  10. Davis J. Q., Dansereau D., Johnstone R. M., Bennett V. Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation. J Biol Chem. 1986 Nov 25;261(33):15368–15371. [PubMed] [Google Scholar]
  11. Fornés M. W., Barbieri A., Sosa M. A., Bertini F. First observations on enzymatic activity and protein content of vesicles separated from rat epididymal fluid. Andrologia. 1991 Sep-Oct;23(5):347–351. doi: 10.1111/j.1439-0272.1991.tb02578.x. [DOI] [PubMed] [Google Scholar]
  12. Haas G. G., Jr, Weiss-Wik R., Wolf D. P. Identification of antisperm antibodies on sperm of infertile men. Fertil Steril. 1982 Jul;38(1):54–61. doi: 10.1016/s0015-0282(16)46396-x. [DOI] [PubMed] [Google Scholar]
  13. Hagelberg C., Allan D. Restricted diffusion of integral membrane proteins and polyphosphoinositides leads to their depletion in microvesicles released from human erythrocytes. Biochem J. 1990 Nov 1;271(3):831–834. doi: 10.1042/bj2710831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hellema H. W., Rümke P. The micro-sperm immobilization test: the use of only motile spermatozoa and studies of complement. Clin Exp Immunol. 1978 Jan;31(1):1–11. [PMC free article] [PubMed] [Google Scholar]
  15. Holguin M. H., Wilcox L. A., Bernshaw N. J., Rosse W. F., Parker C. J. Erythrocyte membrane inhibitor of reactive lysis: effects of phosphatidylinositol-specific phospholipase C on the isolated and cell-associated protein. Blood. 1990 Jan 1;75(1):284–289. [PubMed] [Google Scholar]
  16. Jenne D. E., Tschopp J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7123–7127. doi: 10.1073/pnas.86.18.7123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnstone R. M., Adam M., Hammond J. R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987 Jul 5;262(19):9412–9420. [PubMed] [Google Scholar]
  18. Kelly R. W., Holland P., Skibinski G., Harrison C., McMillan L., Hargreave T., James K. Extracellular organelles (prostasomes) are immunosuppressive components of human semen. Clin Exp Immunol. 1991 Dec;86(3):550–556. doi: 10.1111/j.1365-2249.1991.tb02968.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Medof M. E., Kinoshita T., Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984 Nov 1;160(5):1558–1578. doi: 10.1084/jem.160.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moran P., Beasley H., Gorrell A., Martin E., Gribling P., Fuchs H., Gillett N., Burton L. E., Caras I. W. Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo. J Immunol. 1992 Sep 1;149(5):1736–1743. [PubMed] [Google Scholar]
  22. Morgan B. P., Daw R. A., Siddle K., Luzio J. P., Campbell A. K. Immunoaffinity purification of human complement component C9 using monoclonal antibodies. J Immunol Methods. 1983 Nov 25;64(3):269–281. doi: 10.1016/0022-1759(83)90434-9. [DOI] [PubMed] [Google Scholar]
  23. O'Bryan M. K., Baker H. W., Saunders J. R., Kirszbaum L., Walker I. D., Hudson P., Liu D. Y., Glew M. D., d'Apice A. J., Murphy B. F. Human seminal clusterin (SP-40,40). Isolation and characterization. J Clin Invest. 1990 May;85(5):1477–1486. doi: 10.1172/JCI114594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parish W. E., Carron-Brown J. A., Richards C. B. The detection of antibodies to spermatozoa and to blood group antigens in cervical mucus. J Reprod Fertil. 1967 Jun;13(3):469–483. doi: 10.1530/jrf.0.0130469. [DOI] [PubMed] [Google Scholar]
  25. Price R. J., Boettcher B. The presence of complement in human cervical mucus and its possible relevance to infertility in women with complement-dependent sperm-immobilizing antibodies. Fertil Steril. 1979 Jul;32(1):61–66. doi: 10.1016/s0015-0282(16)44117-8. [DOI] [PubMed] [Google Scholar]
  26. Purcell D. F., McKenzie I. F., Lublin D. M., Johnson P. M., Atkinson J. P., Oglesby T. J., Deacon N. J. The human cell-surface glycoproteins HuLy-m5, membrane co-factor protein (MCP) of the complement system, and trophoblast leucocyte-common (TLX) antigen, are CD46. Immunology. 1990 Jun;70(2):155–161. [PMC free article] [PubMed] [Google Scholar]
  27. Ronquist G., Brody I., Gottfries A., Stegmayr B. An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic fluid: part I. Andrologia. 1978 Jul-Aug;10(4):261–272. doi: 10.1111/j.1439-0272.1978.tb03030.x. [DOI] [PubMed] [Google Scholar]
  28. Ronquist G., Brody I. The prostasome: its secretion and function in man. Biochim Biophys Acta. 1985 Sep 9;822(2):203–218. doi: 10.1016/0304-4157(85)90008-5. [DOI] [PubMed] [Google Scholar]
  29. Ronquist G., Nilsson B. O., Hjertën S. Interaction between prostasomes and spermatozoa from human semen. Arch Androl. 1990;24(2):147–157. doi: 10.3109/01485019008986874. [DOI] [PubMed] [Google Scholar]
  30. Rooney I. A., Davies A., Morgan B. P. Membrane attack complex (MAC)-mediated damage to spermatozoa: protection of the cells by the presence on their membranes of MAC inhibitory proteins. Immunology. 1992 Mar;75(3):499–506. [PMC free article] [PubMed] [Google Scholar]
  31. Rooney I. A., Morgan B. P. Characterization of the membrane attack complex inhibitory protein CD59 antigen on human amniotic cells and in amniotic fluid. Immunology. 1992 Aug;76(4):541–547. [PMC free article] [PubMed] [Google Scholar]
  32. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. doi: 10.1016/0092-8674(92)90143-z. [DOI] [PubMed] [Google Scholar]
  33. Vogel C. W., Müller-Eberhard H. J. Cobra venom factor: improved method for purification and biochemical characterization. J Immunol Methods. 1984 Oct 12;73(1):203–220. doi: 10.1016/0022-1759(84)90045-0. [DOI] [PubMed] [Google Scholar]
  34. Watts M. J., Dankert J. R., Morgan E. P. Isolation and characterization of a membrane-attack-complex-inhibiting protein present in human serum and other biological fluids. Biochem J. 1990 Jan 15;265(2):471–477. doi: 10.1042/bj2650471. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES