Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 May 1;177(5):1309–1316. doi: 10.1084/jem.177.5.1309

Regulatory role of OX22high T cells in mercury-induced autoimmunity in the brown Norway rat

PMCID: PMC2191016  PMID: 8478610

Abstract

The monoclonal antibody OX22 defines a functional split within CD4+ T cells in the rat, with OX22high cells mainly producing interleukin 2 (IL-2) and interferon gamma and responsible for delayed-type hypersensitivity responses, and OX22low cells mainly producing IL-4 and -5 and responsible for providing B cell help. There are reciprocal interactions between OX22high and OX22low cells, and it has been suggested that the OX22low subset has a role in the prevention of autoimmunity. We have used OX22 in vivo to define the role of these subsets in mercuric chloride-induced autoimmunity in the Brown Norway rat. In this model, there is polyclonal B cell activation and animals develop widespread tissue injury. Treatment of thymectomized animals with OX22 led to a profound reduction in the number of OX22high T cells in the peripheral blood. OX22-treated animals consistently developed more severe tissue injury than controls given an irrelevant antibody of the same isotype. Control animals pretreated with broad spectrum antimicrobial drugs showed milder tissue injury, but this protective effect of antimicrobials was lost in OX22-treated animals. Transfer of naive T cells to OX22-treated animals provided protection, but if T cells were depleted in vitro of OX22high cells before transfer, this effect was lost. These data provide evidence for a protective immunoregulatory role for OX22high T cells in mercuric chloride-induced autoimmunity.

Full Text

The Full Text of this article is available as a PDF (764.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur R. P., Mason D. T cells that help B cell responses to soluble antigen are distinguishable from those producing interleukin 2 on mitogenic or allogeneic stimulation. J Exp Med. 1986 Apr 1;163(4):774–786. doi: 10.1084/jem.163.4.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aten J., Veninga A., De Heer E., Rozing J., Nieuwenhuis P., Hoedemaeker P. J., Weening J. J. Susceptibility to the induction of either autoimmunity or immunosuppression by mercuric chloride is related to the major histocompatibility complex class II haplotype. Eur J Immunol. 1991 Mar;21(3):611–616. doi: 10.1002/eji.1830210312. [DOI] [PubMed] [Google Scholar]
  3. Bernabeu C., Carrera A. C., De Landázuri M. O., Sánchez-Madrid F. Interaction between the CD45 antigen and phytohemagglutinin. Inhibitory effect on the lectin-induced T cell proliferation by anti-CD45 monoclonal antibody. Eur J Immunol. 1987 Oct;17(10):1461–1466. doi: 10.1002/eji.1830171012. [DOI] [PubMed] [Google Scholar]
  4. Beverley P. C. Human T cell subsets. Immunol Lett. 1987 Apr;14(4):263–267. doi: 10.1016/0165-2478(87)90001-0. [DOI] [PubMed] [Google Scholar]
  5. Bowman C., Peters D. K., Lockwood C. M. Anti-glomerular basement membrane autoantibodies in the Brown Norway rat: detection by a solid-phase radioimmunoassay. J Immunol Methods. 1983 Jul 29;61(3):325–333. doi: 10.1016/0022-1759(83)90227-2. [DOI] [PubMed] [Google Scholar]
  6. Bradley J. A., Bolton E. M., Briggs J. D., Gracie J. A. Ability of a CD4-positive, MRC OX22 "low" T-cell subpopulation to initiate renal allograft rejection in the athymic nude rat. Transplant Proc. 1989 Feb;21(1 Pt 1):326–327. [PubMed] [Google Scholar]
  7. DeRemee R. A. The treatment of Wegener's granulomatosis with trimethoprim/sulfamethoxazole: illusion or vision? Arthritis Rheum. 1988 Aug;31(8):1068–1074. doi: 10.1002/art.1780310821. [DOI] [PubMed] [Google Scholar]
  8. Druet E., Sapin C., Fournie G., Mandet C., Günther E., Druet P. Genetic control of susceptibility to mercury-induced immune nephritis in various strains of rat. Clin Immunol Immunopathol. 1982 Nov;25(2):203–212. doi: 10.1016/0090-1229(82)90183-0. [DOI] [PubMed] [Google Scholar]
  9. Druet E., Sapin C., Günther E., Feingold N., Druet P. Mercuric chloride-induced anti-glomerular basement membrane antibodies in the rat: genetic control. Eur J Immunol. 1977 Jun;7(6):348–351. doi: 10.1002/eji.1830070605. [DOI] [PubMed] [Google Scholar]
  10. Fischer A. C., Laulis M. K., Horwitz L., Beschorner W. E., Hess A. Host resistance to cyclosporine induced syngeneic graft-versus-host disease. Requirement for two distinct lymphocyte subsets. J Immunol. 1989 Aug 1;143(3):827–832. [PubMed] [Google Scholar]
  11. Goldman M., Druet P., Gleichmann E. TH2 cells in systemic autoimmunity: insights from allogeneic diseases and chemically-induced autoimmunity. Immunol Today. 1991 Jul;12(7):223–227. doi: 10.1016/0167-5699(91)90034-Q. [DOI] [PubMed] [Google Scholar]
  12. Hall B. M., Pearce N. W., Gurley K. E., Dorsch S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med. 1990 Jan 1;171(1):141–157. doi: 10.1084/jem.171.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harp J. A., Davis B. S., Ewald S. J. Inhibition of T cell responses to alloantigens and polyclonal mitogens by Ly-5 antisera. J Immunol. 1984 Jul;133(1):10–15. [PubMed] [Google Scholar]
  14. Hess A. D., Fischer A. C., Beschorner W. E. Effector mechanisms in cyclosporine A-induced syngeneic graft-versus-host disease. Role of CD4+ and CD8+ T lymphocyte subsets. J Immunol. 1990 Jul 15;145(2):526–533. [PubMed] [Google Scholar]
  15. Hess A. D., Horwitz L., Beschorner W. E., Santos G. W. Development of graft-vs.-host disease-like syndrome in cyclosporine-treated rats after syngeneic bone marrow transplantation. I. Development of cytotoxic T lymphocytes with apparent polyclonal anti-Ia specificity, including autoreactivity. J Exp Med. 1985 Apr 1;161(4):718–730. doi: 10.1084/jem.161.4.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirohata S., Lipsky P. E. T cell regulation of human B cell proliferation and differentiation. Regulatory influences of CD45R+ and CD45R- T4 cell subsets. J Immunol. 1989 Apr 15;142(8):2597–2607. [PubMed] [Google Scholar]
  17. Mathieson P. W. Mercuric chloride-induced autoimmunity. Autoimmunity. 1992;13(3):243–247. doi: 10.3109/08916939209004830. [DOI] [PubMed] [Google Scholar]
  18. Mathieson P. W., Stapleton K. J., Oliveira D. B., Lockwood C. M. Immunoregulation of mercuric chloride-induced autoimmunity in Brown Norway rats: a role for CD8+ T cells revealed by in vivo depletion studies. Eur J Immunol. 1991 Sep;21(9):2105–2109. doi: 10.1002/eji.1830210919. [DOI] [PubMed] [Google Scholar]
  19. Mathieson P. W., Thiru S., Oliveira D. B. Mercuric chloride-treated brown Norway rats develop widespread tissue injury including necrotizing vasculitis. Lab Invest. 1992 Jul;67(1):121–129. [PubMed] [Google Scholar]
  20. McKnight A. J., Barclay A. N., Mason D. W. Molecular cloning of rat interleukin 4 cDNA and analysis of the cytokine repertoire of subsets of CD4+ T cells. Eur J Immunol. 1991 May;21(5):1187–1194. doi: 10.1002/eji.1830210514. [DOI] [PubMed] [Google Scholar]
  21. Mirtcheva J., Pfeiffer C., De Bruijn J. A., Jacquesmart F., Gleichmann E. Immunological alterations inducible by mercury compounds. III. H-2A acts as an immune response and H-2E as an immune "suppression" locus for HgCl2-induced antinucleolar autoantibodies. Eur J Immunol. 1989 Dec;19(12):2257–2261. doi: 10.1002/eji.1830191212. [DOI] [PubMed] [Google Scholar]
  22. Mizuno K., Tsuchimoto S., Matsuno Y., Niiyama T., Fujii H., Natori T., Aizawa M. The functional link between the immune suppression gene and Mhc class II molecules. Immunogenetics. 1988;27(6):406–413. doi: 10.1007/BF00364426. [DOI] [PubMed] [Google Scholar]
  23. Mosmann T. R., Coffman R. L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol. 1989;46:111–147. doi: 10.1016/s0065-2776(08)60652-5. [DOI] [PubMed] [Google Scholar]
  24. Newman W., Fast L. D., Rose L. M. Blockade of NK cell lysis is a property of monoclonal antibodies that bind to distinct regions of T-200. J Immunol. 1983 Oct;131(4):1742–1747. [PubMed] [Google Scholar]
  25. Ochel M., Vohr H. W., Pfeiffer C., Gleichmann E. IL-4 is required for the IgE and IgG1 increase and IgG1 autoantibody formation in mice treated with mercuric chloride. J Immunol. 1991 May 1;146(9):3006–3011. [PubMed] [Google Scholar]
  26. Papp I., Wieder K. J., Sablinski T., O'Connell P. J., Milford E. L., Strom T. B., Kupiec-Weglinski J. W. Evidence for functional heterogeneity of rat CD4+ T cells in vivo. Differential expression of IL-2 and IL-4 mRNA in recipients of cardiac allografts. J Immunol. 1992 Mar 1;148(5):1308–1314. [PubMed] [Google Scholar]
  27. Pelletier L., Galceran M., Pasquier R., Ronco P., Verroust P., Bariety J., Druet P. Down modulation of Heymann's nephritis by mercuric chloride. Kidney Int. 1987 Aug;32(2):227–232. doi: 10.1038/ki.1987.196. [DOI] [PubMed] [Google Scholar]
  28. Pelletier L., Pasquier R., Hirsch F., Sapin C., Druet P. Autoreactive T cells in mercury-induced autoimmune disease: in vitro demonstration. J Immunol. 1986 Oct 15;137(8):2548–2554. [PubMed] [Google Scholar]
  29. Pelletier L., Rossert J., Pasquier R., Villarroya H., Belair M. F., Vial M. C., Oriol R., Druet P. Effect of HgCl2 on experimental allergic encephalomyelitis in Lewis rats. HgCl2-induced down-modulation of the disease. Eur J Immunol. 1988 Feb;18(2):243–247. doi: 10.1002/eji.1830180210. [DOI] [PubMed] [Google Scholar]
  30. Pinching A. J., Rees A. J., Pussell B. A., Lockwood C. M., Mitchison R. S., Peters D. K. Relapses in Wegener's granulomatosis: the role of infection. Br Med J. 1980 Sep 27;281(6244):836–838. doi: 10.1136/bmj.281.6244.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Powrie F., Mason D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med. 1990 Dec 1;172(6):1701–1708. doi: 10.1084/jem.172.6.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Prouvost-Danon A., Abadie A., Sapin C., Bazin H., Druet P. Induction of IgE synthesis and potentiation of anti-ovalbumin IgE antibody response by HgCl2 in the rat. J Immunol. 1981 Feb;126(2):699–792. [PubMed] [Google Scholar]
  33. Pusey C. D., Bowman C., Morgan A., Weetman A. P., Hartley B., Lockwood C. M. Kinetics and pathogenicity of autoantibodies induced by mercuric chloride in the brown Norway rat. Clin Exp Immunol. 1990 Jul;81(1):76–82. doi: 10.1111/j.1365-2249.1990.tb05294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rivero V. E., Ferro M. E., Romero-Piffiguer M., Correa S., Yranzo-Volonté N., Riera C. M. Antigen-induced inhibition of autoimmune response to rat male accessory glands: distinct characteristics of I-A- and I-E-positive peritoneal cells. Eur J Immunol. 1991 May;21(5):1141–1146. doi: 10.1002/eji.1830210508. [DOI] [PubMed] [Google Scholar]
  35. Robinson A. P., Puklavec M., Mason D. W. MRC OX-52: a rat T-cell antigen. Immunology. 1986 Apr;57(4):527–531. [PMC free article] [PubMed] [Google Scholar]
  36. Rossert J., Pelletier L., Pasquier R., Druet P. Autoreactive T cells in mercury-induced autoimmunity. Demonstration by limiting dilution analysis. Eur J Immunol. 1988 Nov;18(11):1761–1766. doi: 10.1002/eji.1830181116. [DOI] [PubMed] [Google Scholar]
  37. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  38. Spickett G. P., Brandon M. R., Mason D. W., Williams A. F., Woollett G. R. MRC OX-22, a monoclonal antibody that labels a new subset of T lymphocytes and reacts with the high molecular weight form of the leukocyte-common antigen. J Exp Med. 1983 Sep 1;158(3):795–810. doi: 10.1084/jem.158.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Storb R., Prentice R. L., Buckner C. D., Clift R. A., Appelbaum F., Deeg J., Doney K., Hansen J. A., Mason M., Sanders J. E. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N Engl J Med. 1983 Feb 10;308(6):302–307. doi: 10.1056/NEJM198302103080602. [DOI] [PubMed] [Google Scholar]
  40. Takeuchi T., Rudd C. E., Schlossman S. F., Morimoto C. Induction of suppression following autologous mixed lymphocyte reaction; role of a novel 2H4 antigen. Eur J Immunol. 1987 Jan;17(1):97–103. doi: 10.1002/eji.1830170117. [DOI] [PubMed] [Google Scholar]
  41. Thomas M. L. The leukocyte common antigen family. Annu Rev Immunol. 1989;7:339–369. doi: 10.1146/annurev.iy.07.040189.002011. [DOI] [PubMed] [Google Scholar]
  42. Tighe H., Clark M., Waldmann H. Blocking of cytotoxic T cell function by monoclonal antibodies against the CD45 antigen (T200/leukocyte-common antigen). Transplantation. 1987 Dec;44(6):818–823. doi: 10.1097/00007890-198712000-00020. [DOI] [PubMed] [Google Scholar]
  43. Wang C. H., Korenaga M., Greenwood A., Bell R. G. T-helper subset function in the gut of rats: differential stimulation of eosinophils, mucosal mast cells and antibody-forming cells by OX8- OX22- and OX8- OX22+ cells. Immunology. 1990 Oct;71(2):166–175. [PMC free article] [PubMed] [Google Scholar]
  44. Wedderburn L., Lukic M. L., Edwards S., Kahan M. C., Nardi N., Mitchison N. A. Single-step immunosorbent preparation of F-protein from mouse liver with conservation of the allo-antigenic site, and determination of concentration in liver and serum. Mol Immunol. 1984 Oct;21(10):979–984. doi: 10.1016/0161-5890(84)90156-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES