Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Jun 1;177(6):1745–1753. doi: 10.1084/jem.177.6.1745

Alteration of the glycolipid binding specificity of the pig edema toxin from globotetraosyl to globotriaosyl ceramide alters in vivo tissue targetting and results in a verotoxin 1-like disease in pigs

PMCID: PMC2191045  PMID: 8496689

Abstract

All members of the verotoxin (VT) family specifically recognize globo- series glycolipids on the surface of susceptible cells. Those toxins that are associated with human disease, VT1, VT2, and VT2c, bind to globotriaosyl ceramide (Gb3) while VT2e, which is associated with edema disease of swine, binds preferentially to globotetraosyl ceramide (Gb4). We were recently able to identify, using site-directed mutagenesis, amino acids in the binding subunit of these toxins that are important in defining their glycosphingolipid (GSL) binding specificity (Tyrrell, G. J., K. Ramotar, B. Boyd, B. W. Toye, C. A. Lingwood, and J. L. Brunton. 1992. Proc. Natl. Acad. Sci. USA. 89:524). The concomitant mutation of Gln64 and Lys66 in the VT2e binding subunit to the corresponding residues (Glu and Gln, respectively) found in VT2 effectively converted the GSL binding specificity of the mutant toxin from Gb4 to Gb3 in vitro. We now report that the altered carbohydrate recognition of the mutant toxin (termed GT3) has biological significance, resulting in a unique disease after intravascular injection into pigs as compared with classical VT2e-induced edema disease. The tissue localization of radiolabeled GT3 after intravascular injection was elevated in neural tissues compared with VT2e accumulation, while localization of GT3 to the gastrointestinal tract was relatively reduced. Accordingly, the pathological lesions after challenge with GT3 involved gross edema of the cerebrum, cerebellum, and brain stem, while purified VT2e caused hemorrhage and edema of the cerebellum, and submucosa of the stomach and large intestine. In addition, both radiolabeled toxins bound extensively to tissues not directly involved in the pathology of disease. VT2e, unlike GT3 or VT1, bound extensively to red cells, which have high levels of Gb4. The overall tissue distribution of VT2e was thus found to be influenced by regional blood flow to each organ and not solely by the Gb4 levels of these tissues. Conversely, the distribution of GT3 (and VT1), which cleared more rapidly from the circulation, correlated with respective tissue Gb3 levels rather than blood flow. These studies indicate the primary role of carbohydrate binding specificity in determining systemic pathology, suggest that the red cells act as a toxin carrier in edema disease, and indicate that red cell binding does not protect against the pathology of systemic verotoxemia.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd B., Lingwood C. Verotoxin receptor glycolipid in human renal tissue. Nephron. 1989;51(2):207–210. doi: 10.1159/000185286. [DOI] [PubMed] [Google Scholar]
  2. DeGrandis S., Law H., Brunton J., Gyles C., Lingwood C. A. Globotetraosylceramide is recognized by the pig edema disease toxin. J Biol Chem. 1989 Jul 25;264(21):12520–12525. [PubMed] [Google Scholar]
  3. Hannigan G. E., Gewert D. R., Williams B. R. Characterization and regulation of alpha-interferon receptor expression in interferon-sensitive and -resistant human lymphoblastoid cells. J Biol Chem. 1984 Aug 10;259(15):9456–9460. [PubMed] [Google Scholar]
  4. Head S., Ramotar K., Lingwood C. Modification of the glycolipid-binding specificity of vero cytotoxin by polymyxin B and other cyclic amphipathic peptides. Infect Immun. 1990 Jun;58(6):1532–1537. doi: 10.1128/iai.58.6.1532-1537.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Karmali M. A., Petric M., Lim C., Fleming P. C., Arbus G. S., Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis. 1985 May;151(5):775–782. doi: 10.1093/infdis/151.5.775. [DOI] [PubMed] [Google Scholar]
  6. Lingwood C. A., Law H., Richardson S., Petric M., Brunton J. L., De Grandis S., Karmali M. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem. 1987 Jun 25;262(18):8834–8839. [PubMed] [Google Scholar]
  7. Pang C. Y., Neligan P., Nakatsuka T. Assessment of microsphere technique for measurement of capillary blood flow in random skin flaps in pigs. Plast Reconstr Surg. 1984 Oct;74(4):513–521. doi: 10.1097/00006534-198410000-00009. [DOI] [PubMed] [Google Scholar]
  8. Pudymaitis A., Lingwood C. A. Susceptibility to verotoxin as a function of the cell cycle. J Cell Physiol. 1992 Mar;150(3):632–639. doi: 10.1002/jcp.1041500324. [DOI] [PubMed] [Google Scholar]
  9. Ramotar K., Boyd B., Tyrrell G., Gariepy J., Lingwood C., Brunton J. Characterization of Shiga-like toxin I B subunit purified from overproducing clones of the SLT-I B cistron. Biochem J. 1990 Dec 15;272(3):805–811. doi: 10.1042/bj2720805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Richardson S. E., Karmali M. A., Becker L. E., Smith C. R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum Pathol. 1988 Sep;19(9):1102–1108. doi: 10.1016/s0046-8177(88)80093-5. [DOI] [PubMed] [Google Scholar]
  11. Richardson S. E., Rotman T. A., Jay V., Smith C. R., Becker L. E., Petric M., Olivieri N. F., Karmali M. A. Experimental verocytotoxemia in rabbits. Infect Immun. 1992 Oct;60(10):4154–4167. doi: 10.1128/iai.60.10.4154-4167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Riley L. W., Remis R. S., Helgerson S. D., McGee H. B., Wells J. G., Davis B. R., Hebert R. J., Olcott E. S., Johnson L. M., Hargrett N. T. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983 Mar 24;308(12):681–685. doi: 10.1056/NEJM198303243081203. [DOI] [PubMed] [Google Scholar]
  13. Samuel J. E., Perera L. P., Ward S., O'Brien A. D., Ginsburg V., Krivan H. C. Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect Immun. 1990 Mar;58(3):611–618. doi: 10.1128/iai.58.3.611-618.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sandvig K., Garred O., Prydz K., Kozlov J. V., Hansen S. H., van Deurs B. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature. 1992 Aug 6;358(6386):510–512. doi: 10.1038/358510a0. [DOI] [PubMed] [Google Scholar]
  15. Stein P. E., Boodhoo A., Tyrrell G. J., Brunton J. L., Read R. J. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature. 1992 Feb 20;355(6362):748–750. doi: 10.1038/355748a0. [DOI] [PubMed] [Google Scholar]
  16. Tyrrell G. J., Ramotar K., Toye B., Boyd B., Lingwood C. A., Brunton J. L. Alteration of the carbohydrate binding specificity of verotoxins from Gal alpha 1-4Gal to GalNAc beta 1-3Gal alpha 1-4Gal and vice versa by site-directed mutagenesis of the binding subunit. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):524–528. doi: 10.1073/pnas.89.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Waddell T., Cohen A., Lingwood C. A. Induction of verotoxin sensitivity in receptor-deficient cell lines using the receptor glycolipid globotriosylceramide. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7898–7901. doi: 10.1073/pnas.87.20.7898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Waddell T., Head S., Petric M., Cohen A., Lingwood C. Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2. Biochem Biophys Res Commun. 1988 Apr 29;152(2):674–679. doi: 10.1016/s0006-291x(88)80091-3. [DOI] [PubMed] [Google Scholar]
  19. Zoja C., Corna D., Farina C., Sacchi G., Lingwood C., Doyle M. P., Padhye V. V., Abbate M., Remuzzi G. Verotoxin glycolipid receptors determine the localization of microangiopathic process in rabbits given verotoxin-1. J Lab Clin Med. 1992 Aug;120(2):229–238. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES