Abstract
Immunoglobulin gene rearrangement during mammalian B cell development generally follows an ordered progression, beginning with heavy (H) chain genes and proceeding through kappa and lambda light (L) chain genes. To determine whether the predicted kappa-->lambda hierarchy was occurring in vitro, we generated Epstein-Barr virus-transformed cell lines from cultures undergoing human pre-B cell differentiation. A total of 143 cell lines were established. 24 expressed cell surface mu/lambda by flow cytometry and were clonal by Southern blotting. Surprisingly, two of the mu/lambda-expressing cell lines contained both kappa alleles in germline configuration, and synthesis/expression of conventional lambda L chains was directly proven by immunoprecipitation/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in one of them. Thus, human fetal bone marrow B lineage cells harbor the capacity to make functional lambda L chain gene rearrangements without rearranging or deleting either kappa allele. A third unusual cell line, designated 30.30, was observed to coexpress cell surface kappa and lambda L chains associated with mu H chains. The 30.30 cell line had a diploid karyotype, a single H chain rearrangement, both kappa alleles rearranged, and a single lambda rearrangement. Immunoprecipitation/SDS-PAGE confirmed that 30.30 cells synthesized and expressed kappa and lambda L chains. Multiparameter flow cytometry was used to demonstrate the existence of kappa+/lambda+ cells in fetal bone marrow and fetal spleen at frequencies of 2-3% of the total surface Ig+ B cell population. The flow cytometry data was confirmed by two-color immunofluorescence microscopy. The existence of normal human B cells expressing cell surface kappa and lambda refutes the widely accepted concept that expression of a single L chain isotype is immutable. The kappa+/lambda+ cells may represent transients undergoing L chain isotype switching.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNIER G. M., CEBRA J. J. POLYPEPTIDE CHAINS OF HUMAN GAMMA-GLOBULIN: CELLULAR LOCALIZATION BY FLUORESCENT ANTIBODY. Science. 1964 Jun 26;144(3626):1590–1591. doi: 10.1126/science.144.3626.1590. [DOI] [PubMed] [Google Scholar]
- Barlogie B., Alexanian R., Pershouse M., Smallwood L., Smith L. Cytoplasmic immunoglobulin content in multiple myeloma. J Clin Invest. 1985 Aug;76(2):765–769. doi: 10.1172/JCI112033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beishuizen A., Hählen K., Hagemeijer A., Verhoeven M. A., Hooijkaas H., Adriaansen H. J., Wolvers-Tettero I. L., van Wering E. R., van Dongen J. J. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia. 1991 Aug;5(8):657–667. [PubMed] [Google Scholar]
- Bernier G. M., Cebra J. J. Frequency distribution of alpha, gamma, kappa and lambda polypeptide chains in human lymphoid tissues. J Immunol. 1965 Aug;95(2):246–253. [PubMed] [Google Scholar]
- Blackwell T. K., Alt F. W. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu Rev Genet. 1989;23:605–636. doi: 10.1146/annurev.ge.23.120189.003133. [DOI] [PubMed] [Google Scholar]
- Bouvet J. P., Buffe D., Oriol R., Liacopoulos P. Two myeloma globulins IgG1-kappa and IgG1-lambda, from a single patient (Im). II. Their common cellular origin as revealed by immunofluorescence studies. Immunology. 1974 Dec;27(6):1095–1101. [PMC free article] [PubMed] [Google Scholar]
- Boué D. R., Lebien T. W. Structural characterization of the human B lymphocyte-restricted differentiation antigen CD22. Comparison with CD21 (complement receptor type 2/Epstein-Barr virus receptor). J Immunol. 1988 Jan 1;140(1):192–199. [PubMed] [Google Scholar]
- Choi Y. J., Wong M. S. Double light-chain production by leukemic cells of common clonal origin: a case report with review of pertinent literature. Am J Hematol. 1981;11(1):93–98. doi: 10.1002/ajh.2830110111. [DOI] [PubMed] [Google Scholar]
- Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol. 1990;8:111–137. doi: 10.1146/annurev.iy.08.040190.000551. [DOI] [PubMed] [Google Scholar]
- Durdik J., Moore M. W., Selsing E. Novel kappa light-chain gene rearrangements in mouse lambda light chain-producing B lymphocytes. Nature. 1984 Feb 23;307(5953):749–752. doi: 10.1038/307749a0. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Felsher D. W., Ando D. T., Braun J. Independent rearrangement of Ig lambda genes in tissue culture-derived murine B cell lines. Int Immunol. 1991 Jul;3(7):711–718. doi: 10.1093/intimm/3.7.711. [DOI] [PubMed] [Google Scholar]
- Gollahon K. A., Hagman J., Brinster R. L., Storb U. Ig lambda-producing B cells do not show feedback inhibition of gene rearrangement. J Immunol. 1988 Oct 15;141(8):2771–2780. [PubMed] [Google Scholar]
- Graninger W. B., Goldman P. L., Morton C. C., O'Brien S. J., Korsmeyer S. J. The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J Exp Med. 1988 Feb 1;167(2):488–501. doi: 10.1084/jem.167.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy R. R., Dangl J. L., Hayakawa K., Jager G., Herzenberg L. A., Herzenberg L. A. Frequent lambda light chain gene rearrangement and expression in a Ly-1 B lymphoma with a productive kappa chain allele. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1438–1442. doi: 10.1073/pnas.83.5.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hieter P. A., Hollis G. F., Korsmeyer S. J., Waldmann T. A., Leder P. Clustered arrangement of immunoglobulin lambda constant region genes in man. Nature. 1981 Dec 10;294(5841):536–540. doi: 10.1038/294536a0. [DOI] [PubMed] [Google Scholar]
- Hieter P. A., Korsmeyer S. J., Waldmann T. A., Leder P. Human immunoglobulin kappa light-chain genes are deleted or rearranged in lambda-producing B cells. Nature. 1981 Apr 2;290(5805):368–372. doi: 10.1038/290368a0. [DOI] [PubMed] [Google Scholar]
- Hieter P. A., Max E. E., Seidman J. G., Maizel J. V., Jr, Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980 Nov;22(1 Pt 1):197–207. doi: 10.1016/0092-8674(80)90168-3. [DOI] [PubMed] [Google Scholar]
- Hollis G. F., Hieter P. A., McBride O. W., Swan D., Leder P. Processed genes: a dispersed human immunoglobulin gene bearing evidence of RNA-type processing. Nature. 1982 Mar 25;296(5855):321–325. doi: 10.1038/296321a0. [DOI] [PubMed] [Google Scholar]
- Hopper J. E. Comparative studies on monotypic IgM lambda and IgG kappa from an individual patient. IV. Immunofluorescent evidence for a common clonal synthesis. Blood. 1977 Aug;50(2):203–211. [PubMed] [Google Scholar]
- Kerr W. G., Cooper M. D., Feng L., Burrows P. D., Hendershot L. M. Mu heavy chains can associate with a pseudo-light chain complex (psi L) in human pre-B cell lines. Int Immunol. 1989;1(4):355–361. doi: 10.1093/intimm/1.4.355. [DOI] [PubMed] [Google Scholar]
- Kincade P. W., Lee G., Pietrangeli C. E., Hayashi S., Gimble J. M. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annu Rev Immunol. 1989;7:111–143. doi: 10.1146/annurev.iy.07.040189.000551. [DOI] [PubMed] [Google Scholar]
- Korsmeyer S. J., Hieter P. A., Ravetch J. V., Poplack D. G., Waldmann T. A., Leder P. Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7096–7100. doi: 10.1073/pnas.78.11.7096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korsmeyer S. J., Hieter P. A., Sharrow S. O., Goldman C. K., Leder P., Waldmann T. A. Normal human B cells display ordered light chain gene rearrangements and deletions. J Exp Med. 1982 Oct 1;156(4):975–985. doi: 10.1084/jem.156.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubagawa H., Burrows P. D., Grossi C. E., Mestecky J., Cooper M. D. Precursor B cells transformed by Epstein-Barr virus undergo sterile plasma-cell differentiation: J-chain expression without immunoglobulin. Proc Natl Acad Sci U S A. 1988 Feb;85(3):875–879. doi: 10.1073/pnas.85.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubagawa H., Cooper M. D., Carroll A. J., Burrows P. D. Light-chain gene expression before heavy-chain gene rearrangement in pre-B cells transformed by Epstein-Barr virus. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2356–2360. doi: 10.1073/pnas.86.7.2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumagai K., Abo T., Sekizawa T., Sasaki M. Studies of surface immunoglobulins on human B lymphocytes. I. Dissociation of cell-bound immunoglobulins with acid pH or at 37 degrees C. J Immunol. 1975 Oct;115(4):982–987. [PubMed] [Google Scholar]
- Nishimoto N., Kubagawa H., Ohno T., Gartland G. L., Stankovic A. K., Cooper M. D. Normal pre-B cells express a receptor complex of mu heavy chains and surrogate light-chain proteins. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6284–6288. doi: 10.1073/pnas.88.14.6284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persiani D. M., Durdik J., Selsing E. Active lambda and kappa antibody gene rearrangement in Abelson murine leukemia virus-transformed pre-B cell lines. J Exp Med. 1987 Jun 1;165(6):1655–1674. doi: 10.1084/jem.165.6.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravetch J. V., Siebenlist U., Korsmeyer S., Waldmann T., Leder P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981 Dec;27(3 Pt 2):583–591. doi: 10.1016/0092-8674(81)90400-1. [DOI] [PubMed] [Google Scholar]
- Rolink A., Melchers F. Molecular and cellular origins of B lymphocyte diversity. Cell. 1991 Sep 20;66(6):1081–1094. doi: 10.1016/0092-8674(91)90032-t. [DOI] [PubMed] [Google Scholar]
- Schatz D. G., Oettinger M. A., Schlissel M. S. V(D)J recombination: molecular biology and regulation. Annu Rev Immunol. 1992;10:359–383. doi: 10.1146/annurev.iy.10.040192.002043. [DOI] [PubMed] [Google Scholar]
- Schiff C., Milili M., Bossy D., Tabilio A., Falzetti F., Gabert J., Mannoni P., Fougereau M. Lambda-like and V pre-B genes expression: an early B-lineage marker of human leukemias. Blood. 1991 Sep 15;78(6):1516–1525. [PubMed] [Google Scholar]
- Sharpless T., Traganos F., Darzynkiewicz Z., Melamed M. R. Flow cytofluorimetry: discrimination between single cells and cell aggregates by direct size measurements. Acta Cytol. 1975 Nov-Dec;19(6):577–581. [PubMed] [Google Scholar]
- Siminovitch K. A., Bakhshi A., Goldman P., Korsmeyer S. J. A uniform deleting element mediates the loss of kappa genes in human B cells. Nature. 1985 Jul 18;316(6025):260–262. doi: 10.1038/316260a0. [DOI] [PubMed] [Google Scholar]
- Storb U. The published data. Immunol Rev. 1990 Jun;115:253–260. doi: 10.1111/j.1600-065x.1990.tb00798.x. [DOI] [PubMed] [Google Scholar]
- Tang J. Q., Béné M. C., Faure G. C. Alternative rearrangements of immunoglobulin light chain genes in human leukemia. Leukemia. 1991 Aug;5(8):651–656. [PubMed] [Google Scholar]
- Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
- Vasicek T. J., Leder P. Structure and expression of the human immunoglobulin lambda genes. J Exp Med. 1990 Aug 1;172(2):609–620. doi: 10.1084/jem.172.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villablanca J. G., Anderson J. M., Moseley M., Law C. L., Elstrom R. L., LeBien T. W. Differentiation of normal human pre-B cells in vitro. J Exp Med. 1990 Jul 1;172(1):325–334. doi: 10.1084/jem.172.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb C. F., Cooper M. D., Burrows P. D., Griffin J. A. Immunoglobulin gene rearrangements and deletions in human Epstein-Barr virus-transformed cell lines producing different IgG and IgA subclasses. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5495–5499. doi: 10.1073/pnas.82.16.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf M. L., Buckley J. A., Goldfarb A., Law C. L., LeBien T. W. Development of a bone marrow culture for maintenance and growth of normal human B cell precursors. J Immunol. 1991 Nov 15;147(10):3324–3330. [PubMed] [Google Scholar]