Abstract
Beginning at the time of insulitis (7 wk of age), CD4+ and CD8+ mature thymocytes from nonobese diabetic (NOD) mice exhibit a proliferative unresponsiveness in vitro after T cell receptor (TCR) crosslinking. This unresponsiveness does not result from either insulitis or thymic involution and is long lasting, i.e., persists until diabetes onset (24 wk of age). We previously proposed that it represents a form of thymic T cell anergy that predisposes to diabetes onset. This hypothesis was tested in the present study by further investigating the mechanism responsible for NOD thymic T cell proliferative unresponsiveness and determining whether reversal of this unresponsiveness protects NOD mice from diabetes. Interleukin 4 (IL-4) secretion by thymocytes from > 7-wk- old NOD mice was virtually undetectable after treatment with either anti-TCR alpha/beta, anti-CD3, or Concanavalin A (Con A) compared with those by thymocytes from age- and sex-matched control BALB/c mice stimulated under identical conditions. NOD thymocytes stimulated by anti-TCR alpha/beta or anti-CD3 secreted less IL-2 than did similarly activated BALB/c thymocytes. However, since equivalent levels of IL-3 were secreted by Con A-activated NOD and BALB/c thymocytes, the unresponsiveness of NOD thymic T cells does not appear to be dependent on reduced IL-2 secretion. The surface density and dissociation constant of the high affinity IL-2 receptor of Con A-activated thymocytes from both strains are also similar. The patterns of unresponsiveness and lymphokine secretion seen in anti-TCR/CD3- activated NOD thymic T cells were also observed in activated NOD peripheral spleen T cells. Exogenous recombinant (r)IL-2 only partially reverses NOD thymocyte proliferative unresponsiveness to anti-CD3, and this is mediated by the inability of IL-2 to stimulate a complete IL-4 secretion response. In contrast, exogenous IL-4 reverses the unresponsiveness of both NOD thymic and peripheral T cells completely, and this is associated with the complete restoration of an IL-2 secretion response. Furthermore, the in vivo administration of rIL-4 to prediabetic NOD mice protects them from diabetes. Thus, the ability of rIL-4 to reverse completely the NOD thymic and peripheral T cell proliferative defect in vitro and protect against diabetes in vivo provides further support for a causal relationship between this T cell proliferative unresponsiveness and susceptibility to diabetes in NOD mice.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Sasson S. Z., Le Gros G., Conrad D. H., Finkelman F. D., Paul W. E. IL-4 production by T cells from naive donors. IL-2 is required for IL-4 production. J Immunol. 1990 Aug 15;145(4):1127–1136. [PubMed] [Google Scholar]
- Bendelac A., Schwartz R. H. Th0 cells in the thymus: the question of T-helper lineages. Immunol Rev. 1991 Oct;123:169–188. doi: 10.1111/j.1600-065x.1991.tb00610.x. [DOI] [PubMed] [Google Scholar]
- Blackman M., Kappler J., Marrack P. The role of the T cell receptor in positive and negative selection of developing T cells. Science. 1990 Jun 15;248(4961):1335–1341. doi: 10.1126/science.1972592. [DOI] [PubMed] [Google Scholar]
- Burstein H. J., Abbas A. K. In vivo role of interleukin 4 in T cell tolerance induced by aqueous protein antigen. J Exp Med. 1993 Feb 1;177(2):457–463. doi: 10.1084/jem.177.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bárcena A., Toribio M. L., Gutierrez-Ramos J. C., Kroemer G., Martínez C. Interplay between IL-2 and IL-4 in human thymocyte differentiation: antagonism or agonism. Int Immunol. 1991 May;3(5):419–425. doi: 10.1093/intimm/3.5.419. [DOI] [PubMed] [Google Scholar]
- Castaño L., Eisenbarth G. S. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol. 1990;8:647–679. doi: 10.1146/annurev.iy.08.040190.003243. [DOI] [PubMed] [Google Scholar]
- Dauphinée M. J., Kipper S. B., Wofsy D., Talal N. Interleukin 2 deficiency is a common feature of autoimmune mice. J Immunol. 1981 Dec;127(6):2483–2487. [PubMed] [Google Scholar]
- DeSilva D. R., Urdahl K. B., Jenkins M. K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J Immunol. 1991 Nov 15;147(10):3261–3267. [PubMed] [Google Scholar]
- Debray-Sachs M., Carnaud C., Boitard C., Cohen H., Gresser I., Bedossa P., Bach J. F. Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J Autoimmun. 1991 Apr;4(2):237–248. doi: 10.1016/0896-8411(91)90021-4. [DOI] [PubMed] [Google Scholar]
- Faustman D., Li X. P., Lin H. Y., Fu Y. E., Eisenbarth G., Avruch J., Guo J. Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science. 1991 Dec 20;254(5039):1756–1761. doi: 10.1126/science.1763324. [DOI] [PubMed] [Google Scholar]
- Faustman D., Schoenfeld D., Ziegler R. T-lymphocyte changes linked to autoantibodies. Association of insulin autoantibodies with CD4+CD45R+ lymphocyte subpopulation in prediabetic subjects. Diabetes. 1991 May;40(5):590–597. doi: 10.2337/diab.40.5.590. [DOI] [PubMed] [Google Scholar]
- Fowell D., Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med. 1993 Mar 1;177(3):627–636. doi: 10.1084/jem.177.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowell D., McKnight A. J., Powrie F., Dyke R., Mason D. Subsets of CD4+ T cells and their roles in the induction and prevention of autoimmunity. Immunol Rev. 1991 Oct;123:37–64. doi: 10.1111/j.1600-065x.1991.tb00605.x. [DOI] [PubMed] [Google Scholar]
- Gillis S., Smith K. A. Long term culture of tumour-specific cytotoxic T cells. Nature. 1977 Jul 14;268(5616):154–156. doi: 10.1038/268154a0. [DOI] [PubMed] [Google Scholar]
- Hatamori N., Yokono K., Nagata M., Shii K., Baba S. Impaired mitogen-induced expression of high-affinity interleukin 2 receptors on spleen cells from NOD/Shi/Kbe mice. Diabetes. 1990 Sep;39(9):1070–1078. doi: 10.2337/diab.39.9.1070. [DOI] [PubMed] [Google Scholar]
- Hu-Li J., Ohara J., Watson C., Tsang W., Paul W. E. Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol. 1989 Feb 1;142(3):800–807. [PubMed] [Google Scholar]
- Jacob C. O., Aiso S., Michie S. A., McDevitt H. O., Acha-Orbea H. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci U S A. 1990 Feb;87(3):968–972. doi: 10.1073/pnas.87.3.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klausner R. D., Samelson L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991 Mar 8;64(5):875–878. doi: 10.1016/0092-8674(91)90310-u. [DOI] [PubMed] [Google Scholar]
- Kubo R. T., Roehm N. Preparation and characterization of a "pan-reactive" rabbit anti-mouse T-cell receptor antiserum. Mol Immunol. 1986 Aug;23(8):869–878. doi: 10.1016/0161-5890(86)90072-6. [DOI] [PubMed] [Google Scholar]
- Le Gros G., Ben-Sasson S. Z., Seder R., Finkelman F. D., Paul W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990 Sep 1;172(3):921–929. doi: 10.1084/jem.172.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leiter E. H. The genetics of diabetes susceptibility in mice. FASEB J. 1989 Sep;3(11):2231–2241. doi: 10.1096/fasebj.3.11.2673897. [DOI] [PubMed] [Google Scholar]
- Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorré K., Van Damme J., Ceuppens J. L. A bidirectional regulatory network involving IL 2 and IL 4 in the alternative CD2 pathway of T cell activation. Eur J Immunol. 1990 Jul;20(7):1569–1575. doi: 10.1002/eji.1830200724. [DOI] [PubMed] [Google Scholar]
- Martinez O. M., Gibbons R. S., Garovoy M. R., Aronson F. R. IL-4 inhibits IL-2 receptor expression and IL-2-dependent proliferation of human T cells. J Immunol. 1990 Mar 15;144(6):2211–2215. [PubMed] [Google Scholar]
- Mitchell L. C., Davis L. S., Lipsky P. E. Promotion of human T lymphocyte proliferation by IL-4. J Immunol. 1989 Mar 1;142(5):1548–1557. [PubMed] [Google Scholar]
- Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
- Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
- Mueller D. L., Chiodetti L., Bacon P. A., Schwartz R. H. Clonal anergy blocks the response to IL-4, as well as the production of IL-2, in dual-producing T helper cell clones. J Immunol. 1991 Dec 15;147(12):4118–4125. [PubMed] [Google Scholar]
- Ramsdell F., Fowlkes B. J. Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science. 1990 Jun 15;248(4961):1342–1348. doi: 10.1126/science.1972593. [DOI] [PubMed] [Google Scholar]
- Rapoport M. J., Lazarus A. H., Jaramillo A., Speck E., Delovitch T. L. Thymic T cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T cell receptor regulation of the pathway of p21ras activation. J Exp Med. 1993 Apr 1;177(4):1221–1226. doi: 10.1084/jem.177.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rellahan B. L., Jones L. A., Kruisbeek A. M., Fry A. M., Matis L. A. In vivo induction of anergy in peripheral V beta 8+ T cells by staphylococcal enterotoxin B. J Exp Med. 1990 Oct 1;172(4):1091–1100. doi: 10.1084/jem.172.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robb R. J., Greene W. C., Rusk C. M. Low and high affinity cellular receptors for interleukin 2. Implications for the level of Tac antigen. J Exp Med. 1984 Oct 1;160(4):1126–1146. doi: 10.1084/jem.160.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts J. L., Sharrow S. O., Singer A. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J Exp Med. 1990 Mar 1;171(3):935–940. doi: 10.1084/jem.171.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satoh J., Seino H., Abo T., Tanaka S., Shintani S., Ohta S., Tamura K., Sawai T., Nobunaga T., Oteki T. Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice. J Clin Invest. 1989 Oct;84(4):1345–1348. doi: 10.1172/JCI114304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serreze D. V., Hamaguchi K., Leiter E. H. Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun. 1989 Dec;2(6):759–776. doi: 10.1016/0896-8411(89)90003-6. [DOI] [PubMed] [Google Scholar]
- Serreze D. V., Leiter E. H. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol. 1988 Jun 1;140(11):3801–3807. [PubMed] [Google Scholar]
- Sinha A. A., Lopez M. T., McDevitt H. O. Autoimmune diseases: the failure of self tolerance. Science. 1990 Jun 15;248(4961):1380–1388. doi: 10.1126/science.1972595. [DOI] [PubMed] [Google Scholar]
- Smith K. A. Interleukin-2: inception, impact, and implications. Science. 1988 May 27;240(4856):1169–1176. doi: 10.1126/science.3131876. [DOI] [PubMed] [Google Scholar]
- Spits H., Yssel H., Takebe Y., Arai N., Yokota T., Lee F., Arai K., Banchereau J., de Vries J. E. Recombinant interleukin 4 promotes the growth of human T cells. J Immunol. 1987 Aug 15;139(4):1142–1147. [PubMed] [Google Scholar]
- Swain S. L., Bradley L. M., Croft M., Tonkonogy S., Atkins G., Weinberg A. D., Duncan D. D., Hedrick S. M., Dutton R. W., Huston G. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev. 1991 Oct;123:115–144. doi: 10.1111/j.1600-065x.1991.tb00608.x. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Ben-Sasson S. Z., Paul W. E. IL-4 increases IL-2 production by T cells in response to accessory cell-independent stimuli. J Immunol. 1991 Jun 1;146(11):3831–3839. [PubMed] [Google Scholar]
- Williams M. E., Lichtman A. H., Abbas A. K. Anti-CD3 antibody induces unresponsiveness to IL-2 in Th1 clones but not in Th2 clones. J Immunol. 1990 Feb 15;144(4):1208–1214. [PubMed] [Google Scholar]
- Zier K. S., Leo M. M., Spielman R. S., Baker L. Decreased synthesis of interleukin-2 (IL-2) in insulin-dependent diabetes mellitus. Diabetes. 1984 Jun;33(6):552–555. doi: 10.2337/diab.33.6.552. [DOI] [PubMed] [Google Scholar]
- Zipris D., Crow A. R., Delovitch T. L. Altered thymic and peripheral T-lymphocyte repertoire preceding onset of diabetes in NOD mice. Diabetes. 1991 Apr;40(4):429–435. doi: 10.2337/diab.40.4.429. [DOI] [PubMed] [Google Scholar]
- Zipris D., Lazarus A. H., Crow A. R., Hadzija M., Delovitch T. L. Defective thymic T cell activation by concanavalin A and anti-CD3 in autoimmune nonobese diabetic mice. Evidence for thymic T cell anergy that correlates with the onset of insulitis. J Immunol. 1991 Jun 1;146(11):3763–3771. [PubMed] [Google Scholar]