Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Jul 1;178(1):343–348. doi: 10.1084/jem.178.1.343

Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors

PMCID: PMC2191095  PMID: 8315389

Abstract

The gene encoding a highly immunogenic mycobacterial heat-shock protein (hsp65) was transfected into the murine macrophage tumor cell line J774. The resulting hsp65-expressing cells (J774-hsp65) were no longer able to produce tumors in syngeneic mice. This loss of tumorigenicity was not mediated through T cells since the transfected cells did not produce tumors in athymic mice. If mice are first immunized with the J774-hsp65 cells and then challenged with the parent J774 cells, the mice do not develop tumors, indicating that the presence of the mycobacterial hsp65 protein greatly enhances immunological recognition of unique structures expressed by the parent tumor cells. This is further confirmed by the demonstration in vitro of T cells derived from J774-hsp65-immunized mice that are cytotoxic for the parent J774 cells. The results provide the basis for a novel strategy for enhancing the immunological recognition and decreasing the tumorigenicity of transformed cells.

Full Text

The Full Text of this article is available as a PDF (558.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Hajj H., Edwards D. P., Bjercke R. J., McGuire W. L. Detection of a Mr 24,000 estrogen-regulated protein in human breast cancer by monoclonal antibodies. Cancer Res. 1983 Sep;43(9):4297–4301. [PubMed] [Google Scholar]
  2. Barrios C., Lussow A. R., Van Embden J., Van der Zee R., Rappuoli R., Costantino P., Louis J. A., Lambert P. H., Del Giudice G. Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guérin priming. Eur J Immunol. 1992 Jun;22(6):1365–1372. doi: 10.1002/eji.1830220606. [DOI] [PubMed] [Google Scholar]
  3. Bensaude O., Morange M. Spontaneous high expression of heat-shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO J. 1983;2(2):173–177. doi: 10.1002/j.1460-2075.1983.tb01401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen I. R., Young D. B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today. 1991 Apr;12(4):105–110. doi: 10.1016/0167-5699(91)90093-9. [DOI] [PubMed] [Google Scholar]
  5. Craig E. A. The heat shock response. CRC Crit Rev Biochem. 1985;18(3):239–280. doi: 10.3109/10409238509085135. [DOI] [PubMed] [Google Scholar]
  6. Culver K. W., Ram Z., Wallbridge S., Ishii H., Oldfield E. H., Blaese R. M. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992 Jun 12;256(5063):1550–1552. doi: 10.1126/science.1317968. [DOI] [PubMed] [Google Scholar]
  7. Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
  8. Finlay C. A., Hinds P. W., Tan T. H., Eliyahu D., Oren M., Levine A. J. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol. 1988 Feb;8(2):531–539. doi: 10.1128/mcb.8.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischer H. P., Sharrock C. E., Panayi G. S. High frequency of cord blood lymphocytes against mycobacterial 65-kDa heat-shock protein. Eur J Immunol. 1992 Jun;22(6):1667–1669. doi: 10.1002/eji.1830220651. [DOI] [PubMed] [Google Scholar]
  10. Fuqua S. A., Blum-Salingaros M., McGuire W. L. Induction of the estrogen-regulated "24K" protein by heat shock. Cancer Res. 1989 Aug 1;49(15):4126–4129. [PubMed] [Google Scholar]
  11. Gannon J. V., Lane D. P. Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature. 1991 Feb 28;349(6312):802–806. doi: 10.1038/349802a0. [DOI] [PubMed] [Google Scholar]
  12. Golumbek P. T., Lazenby A. J., Levitsky H. I., Jaffee L. M., Karasuyama H., Baker M., Pardoll D. M. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991 Nov 1;254(5032):713–716. doi: 10.1126/science.1948050. [DOI] [PubMed] [Google Scholar]
  13. Gutierrez A. A., Lemoine N. R., Sikora K. Gene therapy for cancer. Lancet. 1992 Mar 21;339(8795):715–721. doi: 10.1016/0140-6736(92)90606-4. [DOI] [PubMed] [Google Scholar]
  14. Hainaut P., Milner J. Interaction of heat-shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation. EMBO J. 1992 Oct;11(10):3513–3520. doi: 10.1002/j.1460-2075.1992.tb05434.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawakami Y., Zakut R., Topalian S. L., Stötter H., Rosenberg S. A. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol. 1992 Jan 15;148(2):638–643. [PubMed] [Google Scholar]
  16. Langer T., Lu C., Echols H., Flanagan J., Hayer M. K., Hartl F. U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 1992 Apr 23;356(6371):683–689. doi: 10.1038/356683a0. [DOI] [PubMed] [Google Scholar]
  17. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  18. Lukacs K., Kurlander R. J. MHC-unrestricted transfer of antilisterial immunity by freshly isolated immune CD8 spleen cells. J Immunol. 1989 Dec 1;143(11):3731–3736. [PubMed] [Google Scholar]
  19. Lussow A. R., Barrios C., van Embden J., Van der Zee R., Verdini A. S., Pessi A., Louis J. A., Lambert P. H., Del Giudice G. Mycobacterial heat-shock proteins as carrier molecules. Eur J Immunol. 1991 Oct;21(10):2297–2302. doi: 10.1002/eji.1830211002. [DOI] [PubMed] [Google Scholar]
  20. Miller A. D. Human gene therapy comes of age. Nature. 1992 Jun 11;357(6378):455–460. doi: 10.1038/357455a0. [DOI] [PubMed] [Google Scholar]
  21. Munk M. E., Schoel B., Kaufmann S. H. T cell responses of normal individuals towards recombinant protein antigens of Mycobacterium tuberculosis. Eur J Immunol. 1988 Nov;18(11):1835–1838. doi: 10.1002/eji.1830181128. [DOI] [PubMed] [Google Scholar]
  22. Palladino M. A., Jr, Srivastava P. K., Oettgen H. F., DeLeo A. B. Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas. Cancer Res. 1987 Oct 1;47(19):5074–5079. [PubMed] [Google Scholar]
  23. Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
  24. Sherman MYu, Goldberg A. L. Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature. 1992 May 14;357(6374):167–169. doi: 10.1038/357167a0. [DOI] [PubMed] [Google Scholar]
  25. Silva C. L., Lukacs K., Lowrie D. B. Major histocompatibility complex non-restricted presentation to CD4+ T lymphocytes of Mycobacterium leprae heat-shock protein 65 antigen by macrophages transfected with the mycobacterial gene. Immunology. 1993 Jan;78(1):35–42. [PMC free article] [PubMed] [Google Scholar]
  26. Ullrich S. J., Robinson E. A., Law L. W., Willingham M., Appella E. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci U S A. 1986 May;83(10):3121–3125. doi: 10.1073/pnas.83.10.3121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vyakarnam A., Lachmann P. J., Sia D. Y. The killing of tumour cell targets coupled to tuberculin (PPD) by human and murine PPD-reactive T helper clones. I. PPD specificity of killing. Scand J Immunol. 1988 Mar;27(3):337–346. doi: 10.1111/j.1365-3083.1988.tb02355.x. [DOI] [PubMed] [Google Scholar]
  28. Vyakarnam A., Lachmann P. J. The killing of tumour cell targets coupled to tuberculin (PPD) by human and murine PPD-reactive T helper clones. II. Major histocompatibility complex restriction of killing. Scand J Immunol. 1988 Mar;27(3):347–356. doi: 10.1111/j.1365-3083.1988.tb02356.x. [DOI] [PubMed] [Google Scholar]
  29. Young D., Lathigra R., Hendrix R., Sweetser D., Young R. A. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4267–4270. doi: 10.1073/pnas.85.12.4267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Young R. A., Elliott T. J. Stress proteins, infection, and immune surveillance. Cell. 1989 Oct 6;59(1):5–8. doi: 10.1016/0092-8674(89)90861-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES