Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Sep 1;178(3):777–785. doi: 10.1084/jem.178.3.777

Human keratinocytes release the endogenous beta-galactoside-binding soluble lectin immunoglobulin E (IgE-binding protein) which binds to Langerhans cells where it modulates their binding capacity for IgE glycoforms

PMCID: PMC2191148  PMID: 8350053

Abstract

A better understanding of the pathophysiological role of Langerhans cells (LC) in atopic diseases is dictated by the characterization of the structures involved in immunoglobulin (IgE)-binding on their cell surface. We previously reported that human LC express the high affinity receptor for IgE (Fc epsilon RI), as well as the low affinity receptor for IgE (Fc epsilon RII/CD23). In the present study, we document the presence of a third IgE-binding structure on human LC, the IgE-binding protein (epsilon BP), an endogenous soluble beta-galactoside binding lectin. Immunohistochemical studies performed on normal human skin revealed an anti-epsilon BP reactivity in the cytoplasm of keratinocytes and in that of acinous cells of eccrine sweat glands. epsilon BP was also found on the cell surface of LC, as shown by anti- epsilon BP/anti-CD1a double labeling and flow cytometric analysis. Anti- epsilon BP binding to the surface of LC was completely abolished by preincubation with lactose and restored by addition of recombinant human epsilon BP, indicating that epsilon BP binds to LC surface by virtue of its lectin property. Immunoblot analysis of anti-epsilon BP- reactive material in keratinocytes and purified LC disclosed a protein with an apparent molecular weight of 33,000 consistent with epsilon BP. Interestingly, mRNA transcripts for epsilon BP were detected only in keratinocytes but not in purified LC isolated from normal skin. epsilon BP was found to be released in culture supernatants of keratinocytes. Incubation of LC with these supernatants resulted in epsilon BP-binding to LC surface via protein-carbohydrate interaction. Most importantly, we could show that binding of human myeloma IgE to LC was inhibited by epsilon BP. In contrast, neuraminidase-treated human myeloma IgE binds to LC only in the presence of epsilon BP. In situ binding studies revealed that keratinocytes, although containing epsilon BP intracytoplasmatically, failed to exhibit any IgE-binding properties. Collectively, our results suggest that human keratinocytes produce the beta-galactoside-binding lectin epsilon BP, which subsequently binds to the surface of LC where it is functional in modulating their binding capacity for IgE glycoforms.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham J. A., Mergia A., Whang J. L., Tumolo A., Friedman J., Hjerrild K. A., Gospodarowicz D., Fiddes J. C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986 Aug 1;233(4763):545–548. doi: 10.1126/science.2425435. [DOI] [PubMed] [Google Scholar]
  2. Albrandt K., Orida N. K., Liu F. T. An IgE-binding protein with a distinctive repetitive sequence and homology with an IgG receptor. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6859–6863. doi: 10.1073/pnas.84.19.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barondes S. H. Soluble lectins: a new class of extracellular proteins. Science. 1984 Mar 23;223(4642):1259–1264. doi: 10.1126/science.6367039. [DOI] [PubMed] [Google Scholar]
  4. Bieber T., Dannenberg B., Prinz J. C., Rieber E. P., Stolz W., Braun-Falco O., Ring J. Occurrence of IgE-bearing epidermal Langerhans cells in atopic eczema: a study of the time course of the lesions and with regard to the IgE serum level. J Invest Dermatol. 1989 Aug;93(2):215–219. doi: 10.1111/1523-1747.ep12277574. [DOI] [PubMed] [Google Scholar]
  5. Bieber T., Rieger A., Neuchrist C., Prinz J. C., Rieber E. P., Boltz-Nitulescu G., Scheiner O., Kraft D., Ring J., Stingl G. Induction of Fc epsilon R2/CD23 on human epidermal Langerhans cells by human recombinant interleukin 4 and gamma interferon. J Exp Med. 1989 Jul 1;170(1):309–314. doi: 10.1084/jem.170.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bieber T., de la Salle H., Wollenberg A., Hakimi J., Chizzonite R., Ring J., Hanau D., de la Salle C. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J Exp Med. 1992 May 1;175(5):1285–1290. doi: 10.1084/jem.175.5.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988 Mar;106(3):761–771. doi: 10.1083/jcb.106.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bruijnzeel-Koomen C. A., Fokkens W. J., Mudde G. C., Bruijnzeel P. L. Role of Langerhans cells in atopic disease. Int Arch Allergy Appl Immunol. 1989;90 (Suppl 1):51–56. doi: 10.1159/000235076. [DOI] [PubMed] [Google Scholar]
  9. Cherayil B. J., Chaitovitz S., Wong C., Pillai S. Molecular cloning of a human macrophage lectin specific for galactose. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7324–7328. doi: 10.1073/pnas.87.18.7324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cherayil B. J., Weiner S. J., Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med. 1989 Dec 1;170(6):1959–1972. doi: 10.1084/jem.170.6.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  12. Crittenden S. L., Roff C. F., Wang J. L. Carbohydrate-binding protein 35: identification of the galactose-specific lectin in various tissues of mice. Mol Cell Biol. 1984 Jul;4(7):1252–1259. doi: 10.1128/mcb.4.7.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fithian E., Kung P., Goldstein G., Rubenfeld M., Fenoglio C., Edelson R. Reactivity of Langerhans cells with hybridoma antibody. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2541–2544. doi: 10.1073/pnas.78.4.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frigeri L. G., Liu F. T. Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol. 1992 Feb 1;148(3):861–867. [PubMed] [Google Scholar]
  15. Frigeri L. G., Robertson M. W., Liu F. T. Expression of biologically active recombinant rat IgE-binding protein in Escherichia coli. J Biol Chem. 1990 Dec 5;265(34):20763–20769. [PubMed] [Google Scholar]
  16. Gritzmacher C. A., Robertson M. W., Liu F. T. IgE-binding protein. Subcellular location and gene expression in many murine tissues and cells. J Immunol. 1988 Oct 15;141(8):2801–2806. [PubMed] [Google Scholar]
  17. Haines K. A., Flotte T. J., Springer T. A., Gigli I., Thorbecke G. J. Staining of Langerhans cells with monoclonal antibodies to macrophages and lymphoid cells. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3448–3451. doi: 10.1073/pnas.80.11.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hsu D. K., Zuberi R. I., Liu F. T. Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem. 1992 Jul 15;267(20):14167–14174. [PubMed] [Google Scholar]
  19. Laing J. G., Robertson M. W., Gritzmacher C. A., Wang J. L., Liu F. T. Biochemical and immunological comparisons of carbohydrate-binding protein 35 and an IgE-binding protein. J Biol Chem. 1989 Feb 5;264(4):1097–1010. [PubMed] [Google Scholar]
  20. Leffler H., Barondes S. H. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem. 1986 Aug 5;261(22):10119–10126. [PubMed] [Google Scholar]
  21. Liu F. T., Albrandt K., Mendel E., Kulczycki A., Jr, Orida N. K. Identification of an IgE-binding protein by molecular cloning. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4100–4104. doi: 10.1073/pnas.82.12.4100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu F. T. Molecular biology of IgE-binding protein, IgE-binding factors, and IgE receptors. Crit Rev Immunol. 1990;10(3):289–306. [PubMed] [Google Scholar]
  23. Liu F. T., Orida N. Synthesis of surface immunoglobulin E receptor in Xenopus oocytes by translation of mRNA from rat basophilic leukemia cells. J Biol Chem. 1984 Sep 10;259(17):10649–10652. [PubMed] [Google Scholar]
  24. March C. J., Mosley B., Larsen A., Cerretti D. P., Braedt G., Price V., Gillis S., Henney C. S., Kronheim S. R., Grabstein K. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985 Jun 20;315(6021):641–647. doi: 10.1038/315641a0. [DOI] [PubMed] [Google Scholar]
  25. Metzger H., Alcaraz G., Hohman R., Kinet J. P., Pribluda V., Quarto R. The receptor with high affinity for immunoglobulin E. Annu Rev Immunol. 1986;4:419–470. doi: 10.1146/annurev.iy.04.040186.002223. [DOI] [PubMed] [Google Scholar]
  26. Moutsatsos I. K., Wade M., Schindler M., Wang J. L. Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6452–6456. doi: 10.1073/pnas.84.18.6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pecoud A. R., Ruddy S., Conrad D. H. Functional and partial chemical characterization of the carbohydrate moieties of the IgE receptor on rat basophilic leukemia cells and rat mast cells. J Immunol. 1981 Apr;126(4):1624–1629. [PubMed] [Google Scholar]
  28. Raz A., Pazerini G., Carmi P. Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res. 1989 Jul 1;49(13):3489–3493. [PubMed] [Google Scholar]
  29. Robertson M. W., Albrandt K., Keller D., Liu F. T. Human IgE-binding protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry. 1990 Sep 4;29(35):8093–8100. doi: 10.1021/bi00487a015. [DOI] [PubMed] [Google Scholar]
  30. Robertson M. W., Albrandt K., Keller D., Liu F. T. Human IgE-binding protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry. 1990 Sep 4;29(35):8093–8100. doi: 10.1021/bi00487a015. [DOI] [PubMed] [Google Scholar]
  31. Schmid I., Krall W. J., Uittenbogaart C. H., Braun J., Giorgi J. V. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992;13(2):204–208. doi: 10.1002/cyto.990130216. [DOI] [PubMed] [Google Scholar]
  32. Sparrow C. P., Leffler H., Barondes S. H. Multiple soluble beta-galactoside-binding lectins from human lung. J Biol Chem. 1987 May 25;262(15):7383–7390. [PubMed] [Google Scholar]
  33. Truong M. J., Gruart V., Kusnierz J. P., Papin J. P., Loiseau S., Capron A., Capron M. Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/epsilon BP) of the S-type lectin family: role in IgE-dependent activation. J Exp Med. 1993 Jan 1;177(1):243–248. doi: 10.1084/jem.177.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang B., Rieger A., Kilgus O., Ochiai K., Maurer D., Födinger D., Kinet J. P., Stingl G. Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J Exp Med. 1992 May 1;175(5):1353–1365. doi: 10.1084/jem.175.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Woo H. J., Shaw L. M., Messier J. M., Mercurio A. M. The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J Biol Chem. 1990 May 5;265(13):7097–7099. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES