Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Sep 1;178(3):879–887. doi: 10.1084/jem.178.3.879

Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide

PMCID: PMC2191177  PMID: 7688791

Abstract

An immunological basis has been postulated for the strong association between at least five subtypes of the HLA-B27 allele (B27.01, .02, .04, .05, and .06) and ankylosing spondylitis, namely that cytotoxic T lymphocyte (CTL) responses are induced against an "arthritogenic" peptide that these different subtypes can all present. This requires a degree of overlap between the peptide binding repertoires of different B27 molecules. The present work, using CTL responses to Epstein-Barr virus (EBV) as a model system in which to identify B27-restricted epitopes, provides the first direct evidence that different disease- related alleles can present the same immunodominant peptide. We first noted that EBV-specific CTL clones, whether from B27.05-, B27.02-, or B27.04-positive donors, were largely subtype-specific in their restriction, recognizing only EBV-transformed B cell lines of the relevant B27 subtype. However, when tested against targets expressing individual EBV proteins from recombinant vaccinia virus vectors, all B27.05-restricted, all B27.02-restricted, and a proportion of B27.04- restricted clones were reactive to the same viral nuclear antigen, Epstein-Barr nuclear antigen (EBNA)3C. In subsequent peptide sensitization assays, all the EBNA3C-specific clones tested and also the EBNA3C-specific component within polyclonal CTL preparations from B27.05-, B27.02-, or B27.04-positive donors recognized the same immunodominant viral peptide RRIYDLIEL (EBNA3C residues 258-266). This sequence accords well with the proposed B27.05 peptide motif and clearly must be accommodated within the different peptide binding grooves of B27.05, B27.02, and B27.04 molecules. Clonal analysis revealed a second component of the B27.04-restricted response that was not shared with other subtypes. This was directed against an EBV latent membrane protein LMP2 epitope whose sequence RRRWRRLTV satisfies some but not all requirements of the B27.05 peptide motif. We conclude that there is indeed a degree of functional overlap between different B27 subtypes in their selection and presentation of CTL epitopes.

Full Text

The Full Text of this article is available as a PDF (851.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  2. Benjamin R., Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990 Apr;11(4):137–142. doi: 10.1016/0167-5699(90)90051-a. [DOI] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem. 1990;59:253–288. doi: 10.1146/annurev.bi.59.070190.001345. [DOI] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  5. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  6. Breuning M. H., Lucas C. J., Breur B. S., Engelsma M. Y., de Lange G. G., Dekker A. J., Biddison W. E., Ivanyi P. Subtypes of HLA-B27 detected by cytotoxic T lymphocytes and their role in self-recognition. Hum Immunol. 1982 Dec;5(4):259–268. doi: 10.1016/0198-8859(82)90018-0. [DOI] [PubMed] [Google Scholar]
  7. Breur-Vriesendorp B. S., Dekker-Saeys A. J., Ivanyi P. Distribution of HLA-B27 subtypes in patients with ankylosing spondylitis: the disease is associated with a common determinant of the various B27 molecules. Ann Rheum Dis. 1987 May;46(5):353–356. doi: 10.1136/ard.46.5.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breur-Vriesendorp B. S., Vingerhoed J., Kuijpers K. C., van der Horst A. R., de Waal L. P., Kievits F., Ivanyi P. Effect of a Tyr-to-His point-mutation at position 59 in the alpha-1 helix of the HLA-B27 class-I molecule on allospecific and virus-specific cytotoxic T-lymphocyte recognition. Scand J Rheumatol Suppl. 1990;87:36–43. doi: 10.3109/03009749009097056. [DOI] [PubMed] [Google Scholar]
  9. Brewerton D. A., Hart F. D., Nicholls A., Caffrey M., James D. C., Sturrock R. D. Ankylosing spondylitis and HL-A 27. Lancet. 1973 Apr 28;1(7809):904–907. doi: 10.1016/s0140-6736(73)91360-3. [DOI] [PubMed] [Google Scholar]
  10. Buxton S. E., Benjamin R. J., Clayberger C., Parham P., Krensky A. M. Anchoring pockets in human histocompatibility complex leukocyte antigen (HLA) class I molecules: analysis of the conserved B ("45") pocket of HLA-B27. J Exp Med. 1992 Mar 1;175(3):809–820. doi: 10.1084/jem.175.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Calvo V., Rojo S., López D., Galocha B., López de Castro J. A. Structure and diversity of HLA-B27-specific T cell epitopes. Analysis with site-directed mutants mimicking HLA-B27 subtype polymorphism. J Immunol. 1990 May 15;144(10):4038–4045. [PubMed] [Google Scholar]
  12. Cerundolo V., Elliott T., Elvin J., Bastin J., Rammensee H. G., Townsend A. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur J Immunol. 1991 Sep;21(9):2069–2075. doi: 10.1002/eji.1830210915. [DOI] [PubMed] [Google Scholar]
  13. Choo S. Y., Antonelli P., Nisperos B., Nepom G. T., Hansen J. A. Six variants of HLA-B27 identified by isoelectric focusing. Immunogenetics. 1986;23(1):24–29. doi: 10.1007/BF00376518. [DOI] [PubMed] [Google Scholar]
  14. Choo S. Y., Fan L. A., Hansen J. A. A novel HLA-B27 allele maps B27 allospecificity to the region around position 70 in the alpha 1 domain. J Immunol. 1991 Jul 1;147(1):174–180. [PubMed] [Google Scholar]
  15. Doumas B. T. Standards for total serum protein assays--a collaborative study. Clin Chem. 1975 Jul;21(8):1159–1166. [PubMed] [Google Scholar]
  16. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  17. Gavioli R., Kurilla M. G., de Campos-Lima P. O., Wallace L. E., Dolcetti R., Murray R. J., Rickinson A. B., Masucci M. G. Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol. 1993 Mar;67(3):1572–1578. doi: 10.1128/jvi.67.3.1572-1578.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hammer R. E., Maika S. D., Richardson J. A., Tang J. P., Taurog J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990 Nov 30;63(5):1099–1112. doi: 10.1016/0092-8674(90)90512-d. [DOI] [PubMed] [Google Scholar]
  19. Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Greenwood B. M., McMichael A. J. HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet. 1991 Mar 16;337(8742):640–642. doi: 10.1016/0140-6736(91)92452-8. [DOI] [PubMed] [Google Scholar]
  20. Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
  21. López de Castro J. A. HLA-B27 and HLA-A2 subtypes: structure, evolution and function. Immunol Today. 1989 Jul;10(7):239–246. doi: 10.1016/0167-5699(89)90261-2. [DOI] [PubMed] [Google Scholar]
  22. López D., Rojo S., Calvo V., López de Castro J. A. Peptide-presenting similarities among functionally distant HLA-B27 subtypes revealed by alloreactive T lymphocytes of unusual specificity. J Immunol. 1992 Feb 15;148(4):996–1002. [PubMed] [Google Scholar]
  23. MacLean L. HLA-B27 subtypes: implications for the spondyloarthropathies. Ann Rheum Dis. 1992 Aug;51(8):929–931. doi: 10.1136/ard.51.8.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature. 1991 Sep 26;353(6342):321–325. doi: 10.1038/353321a0. [DOI] [PubMed] [Google Scholar]
  25. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell. 1992 Sep 18;70(6):1035–1048. doi: 10.1016/0092-8674(92)90252-8. [DOI] [PubMed] [Google Scholar]
  26. Moss D. J., Misko I. S., Burrows S. R., Burman K., McCarthy R., Sculley T. B. Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature. 1988 Feb 25;331(6158):719–721. doi: 10.1038/331719a0. [DOI] [PubMed] [Google Scholar]
  27. Murray R. J., Kurilla M. G., Brooks J. M., Thomas W. A., Rowe M., Kieff E., Rickinson A. B. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med. 1992 Jul 1;176(1):157–168. doi: 10.1084/jem.176.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murray R. J., Kurilla M. G., Griffin H. M., Brooks J. M., Mackett M., Arrand J. R., Rowe M., Burrows S. R., Moss D. J., Kieff E. Human cytotoxic T-cell responses against Epstein-Barr virus nuclear antigens demonstrated by using recombinant vaccinia viruses. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2906–2910. doi: 10.1073/pnas.87.8.2906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mölders H. H., Breuning M. H., Ivanyi P., Ploegh H. L. Biochemical analysis of variant HLA-B27 antigens. Hum Immunol. 1983 Feb;6(2):111–117. doi: 10.1016/0198-8859(83)90067-8. [DOI] [PubMed] [Google Scholar]
  30. Pazmany L., Rowland-Jones S., Huet S., Hill A., Sutton J., Murray R., Brooks J., McMichael A. Genetic modulation of antigen presentation by HLA-B27 molecules. J Exp Med. 1992 Feb 1;175(2):361–369. doi: 10.1084/jem.175.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rooney C. M., Rowe M., Wallace L. E., Rickinson A. B. Epstein-Barr virus-positive Burkitt's lymphoma cells not recognized by virus-specific T-cell surveillance. Nature. 1985 Oct 17;317(6038):629–631. doi: 10.1038/317629a0. [DOI] [PubMed] [Google Scholar]
  32. Sample J., Liebowitz D., Kieff E. Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol. 1989 Feb;63(2):933–937. doi: 10.1128/jvi.63.2.933-937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., Kieff E. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990 Sep;64(9):4084–4092. doi: 10.1128/jvi.64.9.4084-4092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schlosstein L., Terasaki P. I., Bluestone R., Pearson C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973 Apr 5;288(14):704–706. doi: 10.1056/NEJM197304052881403. [DOI] [PubMed] [Google Scholar]
  35. Toubert A., Gomard E., Grumet F. C., Amor B., Muller J. Y., Levy J. P. Identification of several functional subgroups of HLA-B27 by restriction of the activity of antiviral T killer lymphocytes. Immunogenetics. 1984;20(5):513–525. doi: 10.1007/BF00364354. [DOI] [PubMed] [Google Scholar]
  36. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  37. Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
  38. Vega M. A., Wallace L., Rojo S., Bragado R., Aparicio P., López de Castro J. A. Delineation of functional sites in HLA-B27 antigens. Molecular analysis of HLA-B27 variant Wewak I defined by cytolytic T lymphocytes. J Immunol. 1985 Nov;135(5):3323–3332. [PubMed] [Google Scholar]
  39. Wallace L. E., Rowe M., Gaston J. S., Rickinson A. B., Epstein M. A. Cytotoxic T cell recognition of Epstein-Barr virus-infected B cells. III. Establishment of HLA-restricted cytotoxic T cell lines using interleukin 2. Eur J Immunol. 1982 Dec;12(12):1012–1018. doi: 10.1002/eji.1830121206. [DOI] [PubMed] [Google Scholar]
  40. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. Epstein-Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer. 1989 Jan 15;43(1):67–71. doi: 10.1002/ijc.2910430115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES