Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Sep 1;178(3):1079–1084. doi: 10.1084/jem.178.3.1079

Expression of a functional c-kit receptor on a subset of natural killer cells

PMCID: PMC2191187  PMID: 7688785

Abstract

Natural killer (NK) cells are large granular lymphocytes thought to be important in the host's early immune response to viral infection and malignant transformation. NK cells proliferate and display enhanced cytotoxic activity in response to the T cell growth factor, interleukin 2 (IL-2). Stem cell factor or steel factor (SF) is the ligand for the c- kit receptor, and when combined with other hematopoietic growth factors, SF synergistically promotes the proliferation and differentiation of bone marrow stem cells. In the present study we show the c-kit receptor to be uniquely expressed on a subset of resting human NK cells (CD56bright) which constitutively expresses both the high affinity IL-2 receptor (IL-2R) and the intermediate affinity IL- 2R. Other lymphocyte populations, including CD56dim NK cells, did not appear to express the c-kit receptor. Within the CD56bright NK cell subset, SF alone had no obvious effect on proliferation or cytotoxic activity. SF was shown to significantly augment the proliferative effect of IL-2, and caused a marked shift in the dose-response curve at IL-2 concentrations that selectively saturate the high affinity IL-2R. The potentiating effect of SF on NK cell proliferation was dependent on IL-2 binding to the high affinity IL-2R, and was blocked by a monoclonal antibody directed against the c-kit receptor. SF did not enhance proliferation at higher IL-2 concentrations that saturate the intermediate affinity IL-2R, nor did SF enhance IL-2-induced cytotoxic activity. Together, these data indicate that SF and IL-2 act synergistically to directly augment the proliferative capacity of a unique human NK cell subset constitutively expressing the high affinity IL-2R and the c-kit receptor. The implications of these findings on NK cell development and the host's early immune response to pathogen invasion are discussed.

Full Text

The Full Text of this article is available as a PDF (663.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avraham H., Vannier E., Cowley S., Jiang S. X., Chi S., Dinarello C. A., Zsebo K. M., Groopman J. E. Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells. Blood. 1992 Jan 15;79(2):365–371. [PubMed] [Google Scholar]
  2. Caligiuri M. A., Murray C., Robertson M. J., Wang E., Cochran K., Cameron C., Schow P., Ross M. E., Klumpp T. R., Soiffer R. J. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest. 1993 Jan;91(1):123–132. doi: 10.1172/JCI116161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caligiuri M. A., Zmuidzinas A., Manley T. J., Levine H., Smith K. A., Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990 May 1;171(5):1509–1526. doi: 10.1084/jem.171.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. D'Andrea A. D., Fasman G. D., Lodish H. F. Erythropoietin receptor and interleukin-2 receptor beta chain: a new receptor family. Cell. 1989 Sep 22;58(6):1023–1024. doi: 10.1016/0092-8674(89)90499-6. [DOI] [PubMed] [Google Scholar]
  5. Langley K. E., Bennett L. G., Wypych J., Yancik S. A., Liu X. D., Westcott K. R., Chang D. G., Smith K. A., Zsebo K. M. Soluble stem cell factor in human serum. Blood. 1993 Feb 1;81(3):656–660. [PubMed] [Google Scholar]
  6. Lerner N. B., Nocka K. H., Cole S. R., Qiu F. H., Strife A., Ashman L. K., Besmer P. Monoclonal antibody YB5.B8 identifies the human c-kit protein product. Blood. 1991 May 1;77(9):1876–1883. [PubMed] [Google Scholar]
  7. McNiece I. K., Langley K. E., Zsebo K. M. Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp Hematol. 1991 Mar;19(3):226–231. [PubMed] [Google Scholar]
  8. Miller J. S., Verfaillie C., McGlave P. The generation of human natural killer cells from CD34+/DR- primitive progenitors in long-term bone marrow culture. Blood. 1992 Nov 1;80(9):2182–2187. [PubMed] [Google Scholar]
  9. Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989 Nov 15;143(10):3183–3191. [PubMed] [Google Scholar]
  10. Nagler A., Lanier L. L., Phillips J. H. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med. 1990 May 1;171(5):1527–1533. doi: 10.1084/jem.171.5.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robertson M. J., Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990 Dec 15;76(12):2421–2438. [PubMed] [Google Scholar]
  12. Takeshita T., Asao H., Ohtani K., Ishii N., Kumaki S., Tanaka N., Munakata H., Nakamura M., Sugamura K. Cloning of the gamma chain of the human IL-2 receptor. Science. 1992 Jul 17;257(5068):379–382. doi: 10.1126/science.1631559. [DOI] [PubMed] [Google Scholar]
  13. Voss S. D., Sondel P. M., Robb R. J. Characterization of the interleukin 2 receptors (IL-2R) expressed on human natural killer cells activated in vivo by IL-2: association of the p64 IL-2R gamma chain with the IL-2R beta chain in functional intermediate-affinity IL-2R. J Exp Med. 1992 Aug 1;176(2):531–541. doi: 10.1084/jem.176.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wang H. M., Smith K. A. The interleukin 2 receptor. Functional consequences of its bimolecular structure. J Exp Med. 1987 Oct 1;166(4):1055–1069. doi: 10.1084/jem.166.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Williams D. E., Eisenman J., Baird A., Rauch C., Van Ness K., March C. J., Park L. S., Martin U., Mochizuki D. Y., Boswell H. S. Identification of a ligand for the c-kit proto-oncogene. Cell. 1990 Oct 5;63(1):167–174. doi: 10.1016/0092-8674(90)90297-r. [DOI] [PubMed] [Google Scholar]
  16. Yarden Y., Kuang W. J., Yang-Feng T., Coussens L., Munemitsu S., Dull T. J., Chen E., Schlessinger J., Francke U., Ullrich A. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987 Nov;6(11):3341–3351. doi: 10.1002/j.1460-2075.1987.tb02655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zsebo K. M., Wypych J., McNiece I. K., Lu H. S., Smith K. A., Karkare S. B., Sachdev R. K., Yuschenkoff V. N., Birkett N. C., Williams L. R. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver--conditioned medium. Cell. 1990 Oct 5;63(1):195–201. doi: 10.1016/0092-8674(90)90300-4. [DOI] [PubMed] [Google Scholar]
  18. de Vries P., Brasel K. A., Eisenman J. R., Alpert A. R., Williams D. E. The effect of recombinant mast cell growth factor on purified murine hematopoietic stem cells. J Exp Med. 1991 May 1;173(5):1205–1211. doi: 10.1084/jem.173.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES