Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Oct 1;178(4):1397–1406. doi: 10.1084/jem.178.4.1397

Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes

PMCID: PMC2191191  PMID: 8376943

Abstract

In this study, we have used a newly generated monoclonal antibody (mAb C1.7) to identify a novel 38-kD signal-transducing surface molecule (p38) expressed by lymphocyte subsets capable of cell-mediated cytotoxicity. Virtually all CD16+/CD56+ natural killer (NK) cells and approximately half of CD8+ (T cell receptor [TCR] alpha/beta+) T cells and TCR-gamma/delta+ T cells express the p38 surface molecule. Stimulation of p38 on NK cells with mAb C1.7 activated cytotoxicity, induced lymphokine production, and initiated polyphosphoinositol turnover and [Ca2+]i increases. Unlike other NK cell surface molecules that activate cytotoxicity, p38 stimulation did not result in the release of the granule enzyme N-carbobenzoxy-L-thiobenzyl ester- esterase even under conditions in which mAb C1.7 induced NK cell- mediated redirected lysis of Fc gamma R+ target cells. Activated (recombinant interleukin 2 [rIL-2], 5 d) CD8+ T cells mediated non- major histocompatibility complex (MHC)-restricted cytotoxicity, and the CD8+/p38+ subset contained the overwhelming majority of this activity. F(ab')2 fragments of mAb C1.7 inhibited non-MHC-restricted cytotoxicity mediated by resting NK cells and rIL-2-cultured T cells but did not affect spontaneous cytotoxicity mediated by activated, cultured NK cells. Taken as a whole, our results suggest that p38 may have a direct role in the recognition, signal transduction, and/or lytic mechanisms of non-MHC-restricted cytotoxicity.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anasetti C., Martin P. J., June C. H., Hellstrom K. E., Ledbetter J. A., Rabinovitch P. S., Morishita Y., Hellstrom I., Hansen J. A. Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fc-receptor (CD16). J Immunol. 1987 Sep 15;139(6):1772–1779. [PubMed] [Google Scholar]
  2. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellone G., Valiante N. M., Viale O., Ciccone E., Moretta L., Trinchieri G. Regulation of hematopoiesis in vitro by alloreactive natural killer cell clones. J Exp Med. 1993 Apr 1;177(4):1117–1125. doi: 10.1084/jem.177.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassatella M. A., Anegón I., Cuturi M. C., Griskey P., Trinchieri G., Perussia B. Fc gamma R(CD16) interaction with ligand induces Ca2+ mobilization and phosphoinositide turnover in human natural killer cells. Role of Ca2+ in Fc gamma R(CD16)-induced transcription and expression of lymphokine genes. J Exp Med. 1989 Feb 1;169(2):549–567. doi: 10.1084/jem.169.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chervenak R., Wolcott R. M. Target cell expression of MHC antigens is not (always) a turn-off signal to natural killer cells. J Immunol. 1988 Jun 1;140(11):3712–3716. [PubMed] [Google Scholar]
  6. Ciccone E., Pende D., Viale O., Than A., Di Donato C., Orengo A. M., Biassoni R., Verdiani S., Amoroso A., Moretta A. Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med. 1992 Oct 1;176(4):963–971. doi: 10.1084/jem.176.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clément M. V., Legros-Maida S., Soulie A., Guillet J., Sasportes M. Dissociation of natural killer and lymphocyte-activated killer cell lytic activities in human CD3- large granular lymphocytes. Eur J Immunol. 1993 Mar;23(3):697–701. doi: 10.1002/eji.1830230319. [DOI] [PubMed] [Google Scholar]
  8. Cuturi M. C., Murphy M., Costa-Giomi M. P., Weinmann R., Perussia B., Trinchieri G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J Exp Med. 1987 Jun 1;165(6):1581–1594. doi: 10.1084/jem.165.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans D. L., Harris D. T., Leary J. H., 3rd, St John A. L., Jaso-Friedman L. Identification of a vimentin-like function associated molecule (FAM) on rat NK cells: evidence for receptor function. Scand J Immunol. 1993 Feb;37(2):131–142. doi: 10.1111/j.1365-3083.1993.tb01748.x. [DOI] [PubMed] [Google Scholar]
  10. Evans D. L., Jaso-Friedmann L., Smith E. E., Jr, St John A., Koren H. S., Harris D. T. Identification of a putative antigen receptor on fish nonspecific cytotoxic cells with monoclonal antibodies. J Immunol. 1988 Jul 1;141(1):324–332. [PubMed] [Google Scholar]
  11. Frey J. L., Bino T., Kantor R. R., Segal D. M., Giardina S. L., Roder J., Anderson S., Ortaldo J. R. Mechanism of target cell recognition by natural killer cells: characterization of a novel triggering molecule restricted to CD3- large granular lymphocytes. J Exp Med. 1991 Dec 1;174(6):1527–1536. doi: 10.1084/jem.174.6.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giorda R., Rudert W. A., Vavassori C., Chambers W. H., Hiserodt J. C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990 Sep 14;249(4974):1298–1300. doi: 10.1126/science.2399464. [DOI] [PubMed] [Google Scholar]
  13. Hahn W. C., Menu E., Bothwell A. L., Sims P. J., Bierer B. E. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. Science. 1992 Jun 26;256(5065):1805–1807. doi: 10.1126/science.1377404. [DOI] [PubMed] [Google Scholar]
  14. Harris D. T., Jaso-Friedmann L., Devlin R. B., Koren H. S., Evans D. L. Identification of an evolutionarily conserved, function-associated molecule on human natural killer cells. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3009–3013. doi: 10.1073/pnas.88.8.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holscher M., Givan A. L., Brooks C. G. The effect of transfected MHC class I genes on sensitivity to natural killer cells. Immunology. 1991 May;73(1):44–51. [PMC free article] [PubMed] [Google Scholar]
  16. Houchins J. P., Yabe T., McSherry C., Bach F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 1991 Apr 1;173(4):1017–1020. doi: 10.1084/jem.173.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karlhofer F. M., Yokoyama W. M. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. J Immunol. 1991 May 15;146(10):3662–3673. [PubMed] [Google Scholar]
  18. Kaufman D. S., Schoon R. A., Leibson P. J. MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. J Immunol. 1993 Feb 15;150(4):1429–1436. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lanier L. L., Phillips J. H., Hackett J., Jr, Tutt M., Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986 Nov 1;137(9):2735–2739. [PubMed] [Google Scholar]
  21. Lanier L. L., Ruitenberg J. J., Phillips J. H. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol. 1988 Nov 15;141(10):3478–3485. [PubMed] [Google Scholar]
  22. Leiden J. M., Karpinski B. A., Gottschalk L., Kornbluth J. Susceptibility to natural killer cell-mediated cytolysis is independent of the level of target cell class I HLA expression. J Immunol. 1989 Mar 15;142(6):2140–2147. [PubMed] [Google Scholar]
  23. Ljunggren H. G., Kärre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 1990 Jul;11(7):237–244. doi: 10.1016/0167-5699(90)90097-s. [DOI] [PubMed] [Google Scholar]
  24. Moretta A., Bottino C., Pende D., Tripodi G., Tambussi G., Viale O., Orengo A., Barbaresi M., Merli A., Ciccone E. Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med. 1990 Dec 1;172(6):1589–1598. doi: 10.1084/jem.172.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moretta L., Ciccone E., Moretta A., Höglund P., Ohlén C., Kärre K. Allorecognition by NK cells: nonself or no self? Immunol Today. 1992 Aug;13(8):300–306. doi: 10.1016/0167-5699(92)90042-6. [DOI] [PubMed] [Google Scholar]
  26. Ohlén C., Bejarano M. T., Grönberg A., Torsteinsdottir S., Franksson L., Ljunggren H. G., Klein E., Klein G., Kärre K. Studies of sublines selected for loss of HLA expression from an EBV-transformed lymphoblastoid cell line. Changes in sensitivity to cytotoxic T cells activated by allostimulation and natural killer cells activated by IFN or IL-2. J Immunol. 1989 May 1;142(9):3336–3341. [PubMed] [Google Scholar]
  27. Ohlén C., Kling G., Höglund P., Hansson M., Scangos G., Bieberich C., Jay G., Kärre K. Prevention of allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science. 1989 Nov 3;246(4930):666–668. doi: 10.1126/science.2814488. [DOI] [PubMed] [Google Scholar]
  28. Perussia B., Ramoni C., Anegon I., Cuturi M. C., Faust J., Trinchieri G. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul. 1987;6(4):171–188. [PubMed] [Google Scholar]
  29. Perussia B., Trinchieri G., Jackson A., Warner N. L., Faust J., Rumpold H., Kraft D., Lanier L. L. The Fc receptor for IgG on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J Immunol. 1984 Jul;133(1):180–189. [PubMed] [Google Scholar]
  30. Ryan J. C., Turck J., Niemi E. C., Yokoyama W. M., Seaman W. E. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol. 1992 Sep 1;149(5):1631–1635. [PubMed] [Google Scholar]
  31. Sentman C. L., Hackett J., Jr, Kumar V., Bennett M. Identification of a subset of murine natural killer cells that mediates rejection of Hh-1d but not Hh-1b bone marrow grafts. J Exp Med. 1989 Jul 1;170(1):191–202. doi: 10.1084/jem.170.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sentman C. L., Kumar V., Bennett M. Rejection of bone marrow cell allografts by natural killer cell subsets: 5E6+ cell specificity for Hh-1 determinant 2 shared by H-2d and H-2f. Eur J Immunol. 1991 Nov;21(11):2821–2828. doi: 10.1002/eji.1830211125. [DOI] [PubMed] [Google Scholar]
  33. Siliciano R. F., Pratt J. C., Schmidt R. E., Ritz J., Reinherz E. L. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature. 1985 Oct 3;317(6036):428–430. doi: 10.1038/317428a0. [DOI] [PubMed] [Google Scholar]
  34. Smyth M. J., Zachariae C. O., Norihisa Y., Ortaldo J. R., Hishinuma A., Matsushima K. IL-8 gene expression and production in human peripheral blood lymphocyte subsets. J Immunol. 1991 Jun 1;146(11):3815–3823. [PubMed] [Google Scholar]
  35. Stam N. J., Kast W. M., Voordouw A. C., Pastoors L. B., van der Hoeven F. A., Melief C. J., Ploegh H. L. Lack of correlation between levels of MHC class I antigen and susceptibility to lysis of small cellular lung carcinoma (SCLC) by natural killer cells. J Immunol. 1989 Jun 1;142(11):4113–4117. [PubMed] [Google Scholar]
  36. Storkus W. J., Alexander J., Payne J. A., Cresswell P., Dawson J. R. The alpha 1/alpha 2 domains of class I HLA molecules confer resistance to natural killing. J Immunol. 1989 Dec 1;143(11):3853–3857. [PubMed] [Google Scholar]
  37. Storkus W. J., Alexander J., Payne J. A., Dawson J. R., Cresswell P. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2361–2364. doi: 10.1073/pnas.86.7.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Storkus W. J., Howell D. N., Salter R. D., Dawson J. R., Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol. 1987 Mar 15;138(6):1657–1659. [PubMed] [Google Scholar]
  39. Storkus W. J., Salter R. D., Alexander J., Ward F. E., Ruiz R. E., Cresswell P., Dawson J. R. Class I-induced resistance to natural killing: identification of nonpermissive residues in HLA-A2. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5989–5992. doi: 10.1073/pnas.88.14.5989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trinchieri G., De Marchi M., Mayr W., Savi M., Ceppellini R. Lymphocyte antibody lymphocytolytic interaction (LALI) with special emphasis on HL-A. Transplant Proc. 1973 Dec;5(4):1631–1649. [PubMed] [Google Scholar]
  42. Yokoyama W. M. Recognition structures on natural killer cells. Curr Opin Immunol. 1993 Feb;5(1):67–73. doi: 10.1016/0952-7915(93)90083-5. [DOI] [PubMed] [Google Scholar]
  43. Yu Y. Y., Kumar V., Bennett M. Murine natural killer cells and marrow graft rejection. Annu Rev Immunol. 1992;10:189–213. doi: 10.1146/annurev.iy.10.040192.001201. [DOI] [PubMed] [Google Scholar]
  44. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974 Oct 11;251(5475):547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES