Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Oct 1;178(4):1271–1281. doi: 10.1084/jem.178.4.1271

Flow cytometric identification of proliferative subpopulations within normal human epidermis and the localization of the primary hyperproliferative population in psoriasis

PMCID: PMC2191196  PMID: 7690831

Abstract

In this study we define the proliferative compartments of in vivo human epidermis, using specific antibodies related to cell differentiation (beta 1 and beta 4 integrins and K1/K10 differentiation keratins) and cell cycle (proliferating cell nuclear antigen [PCNA]) in combination with flow cytometric quantitation of the DNA content and optical characteristics of the cells. The beta 1 integrin (CD29) marked both of the potentially proliferative subsets in normal epidermis. One subset of normal epidermis is CD29+ K1/K10-, which was predominantly basal, and found to be comprised of slow cycling, small cells with primitive cytoplasmic organization. The vast majority (95.5%) of these cells were in a quiescent state (G0/early G1) as indicated by their lack of the cyclin, PCNA. The other proliferative subset of normal epidermis was CD29+ K1/K10+, which was suprabasal and occasional basal, highly proliferative, larger in size, and which exhibited a more complex cytoplasmic structure. Because early differentiation (K1/K10 expression) has begun in the CD29+ K1/K10+ subset, it is highly likely that they represent the proliferative population which is capable of transiently amplifying itself before terminal differentiation. Within lesional psoriatic epidermis, similar proliferative cell populations were present as in normal epidermis, and the hyperproliferative defect was localized to the beta 1 and beta 4 integrin+, K1/K10- populations, which in normal epidermis is basally located and quiescent with regard to cell cycle. In psoriatic epidermis, a six- to sevenfold increase in the number of cells in the S/G2+M phase of cell cycle was found among CD29+ K1/K10- cells (p < 0.05). Furthermore, all lesional K1/K10- cells showed high PCNA positivity, indicating that all these cells had been recently induced into cell cycle. By contrast, the proportion of cycling cells among lesional psoriatic CD29+ K1/K10+ keratinocytes was similar to normals. Anti-HLA-DR, CD45, and vimentin antibodies were used to concomitantly track the proliferative states of Langerhans cell, melanocyte, and infiltrating leukocyte populations. In normal epidermis, the cycling fractions (cells in S/G2/M phase) of these cells were similar to the CD29+K1/K10- keratinocytes, whereas in lesional epidermis their cycling pools were increased relative to normal, but not so much as the proliferative fractions of psoriatic CD29+ K1/K10- keratinocytes. These data demonstrate the use of simultaneous analysis of integrin expression, differentiation keratins, cyclin, cell cycle status, and optical characteristics of freshly isolated human epidermal cells. Such analysis allowed the physical identification and quantification of cy cling populations in normal human skin, and has enabled the precise location of the primary epidermal proliferative defect in psoriasis.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. C., Watt F. M. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell. 1990 Oct 19;63(2):425–435. doi: 10.1016/0092-8674(90)90175-e. [DOI] [PubMed] [Google Scholar]
  2. Adams J. C., Watt F. M. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature. 1989 Jul 27;340(6231):307–309. doi: 10.1038/340307a0. [DOI] [PubMed] [Google Scholar]
  3. Baadsgaard O., Gupta A. K., Taylor R. S., Ellis C. N., Voorhees J. J., Cooper K. D. Psoriatic epidermal cells demonstrate increased numbers and function of non-Langerhans antigen-presenting cells. J Invest Dermatol. 1989 Feb;92(2):190–195. doi: 10.1111/1523-1747.ep12276718. [DOI] [PubMed] [Google Scholar]
  4. Barrandon Y., Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5390–5394. doi: 10.1073/pnas.82.16.5390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun-Falco O., Schmoeckel C. The dermal inflammatory reaction in initial psoriatic lesions. Arch Dermatol Res. 1977 Mar 25;258(1):9–16. doi: 10.1007/BF00582862. [DOI] [PubMed] [Google Scholar]
  6. Clausen O. P., Potten C. S. Heterogeneity of keratinocytes in the epidermal basal cell layer. J Cutan Pathol. 1990 Jun;17(3):129–143. doi: 10.1111/j.1600-0560.1990.tb00072.x. [DOI] [PubMed] [Google Scholar]
  7. De Strooper B., Van der Schueren B., Jaspers M., Saison M., Spaepen M., Van Leuven F., Van den Berghe H., Cassiman J. J. Distribution of the beta 1 subgroup of the integrins in human cells and tissues. J Histochem Cytochem. 1989 Mar;37(3):299–307. doi: 10.1177/37.3.2645360. [DOI] [PubMed] [Google Scholar]
  8. Esmann J., Voorhees J. J., Fisher G. J. Increased membrane-associated transglutaminase activity in psoriasis. Biochem Biophys Res Commun. 1989 Oct 16;164(1):219–224. doi: 10.1016/0006-291x(89)91705-1. [DOI] [PubMed] [Google Scholar]
  9. Fuchs E., Green H. The expression of keratin genes in epidermis and cultured epidermal cells. Cell. 1978 Nov;15(3):887–897. doi: 10.1016/0092-8674(78)90273-8. [DOI] [PubMed] [Google Scholar]
  10. Gelfant S. On the existence of non-cycling germinative cells in human epidermis in vivo and cell cycle aspects of psoriasis. Cell Tissue Kinet. 1982 Jul;15(4):393–397. doi: 10.1111/j.1365-2184.1982.tb01056.x. [DOI] [PubMed] [Google Scholar]
  11. Gelfant S. The cell cycle in psoriasis: a reappraisal. Br J Dermatol. 1976 Dec;95(6):577–590. doi: 10.1111/j.1365-2133.1976.tb07028.x. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb A. B., Posnett D. N., Crow M. K., Horikoshi T., Mayer L., Carter D. M. Purification and in vitro growth of human epidermal basal keratinocytes using a monoclonal antibody. J Invest Dermatol. 1985 Oct;85(4):299–303. doi: 10.1111/1523-1747.ep12276866. [DOI] [PubMed] [Google Scholar]
  13. Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
  14. Gupta A. K., Baadsgaard O., Ellis C. N., Voorhees J. J., Cooper K. D. Lymphocytes and macrophages of the epidermis and dermis in lesional psoriatic skin, but not epidermal Langerhans cells, are depleted by treatment with cyclosporin A. Arch Dermatol Res. 1989;281(4):219–226. doi: 10.1007/BF00431054. [DOI] [PubMed] [Google Scholar]
  15. Hammerberg C., Fisher G. J., Voorhees J. J., Cooper K. D. Elevated thymidine phosphorylase activity in psoriatic lesions accounts for the apparent presence of an epidermal "growth inhibitor," but is not in itself growth inhibitory. J Invest Dermatol. 1991 Aug;97(2):286–290. doi: 10.1111/1523-1747.ep12480547. [DOI] [PubMed] [Google Scholar]
  16. Hemler M. E., Huang C., Takada Y., Schwarz L., Strominger J. L., Clabby M. L. Characterization of the cell surface heterodimer VLA-4 and related peptides. J Biol Chem. 1987 Aug 25;262(24):11478–11485. [PubMed] [Google Scholar]
  17. Hertle M. D., Kubler M. D., Leigh I. M., Watt F. M. Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J Clin Invest. 1992 Jun;89(6):1892–1901. doi: 10.1172/JCI115794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimmel M., Darzynkiewicz Z., Staiano-Coico L. Stathmokinetic analysis of human epidermal cells in vitro. Cell Tissue Kinet. 1986 May;19(3):289–304. doi: 10.1111/j.1365-2184.1986.tb00681.x. [DOI] [PubMed] [Google Scholar]
  19. Konter U., Kellner I., Klein E., Kaufmann R., Mielke V., Sterry W. Adhesion molecule mapping in normal human skin. Arch Dermatol Res. 1989;281(7):454–462. doi: 10.1007/BF00510080. [DOI] [PubMed] [Google Scholar]
  20. Kramer R. H., McDonald K. A., Crowley E., Ramos D. M., Damsky C. H. Melanoma cell adhesion to basement membrane mediated by integrin-related complexes. Cancer Res. 1989 Jan 15;49(2):393–402. [PubMed] [Google Scholar]
  21. Kurki P., Vanderlaan M., Dolbeare F., Gray J., Tan E. M. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res. 1986 Sep;166(1):209–219. doi: 10.1016/0014-4827(86)90520-3. [DOI] [PubMed] [Google Scholar]
  22. Lajtha L. G. Haemopoietic stem cells. Br J Haematol. 1975 Apr;29(4):529–535. doi: 10.1111/j.1365-2141.1975.tb02739.x. [DOI] [PubMed] [Google Scholar]
  23. Larjava H., Peltonen J., Akiyama S. K., Yamada S. S., Gralnick H. R., Uitto J., Yamada K. M. Novel function for beta 1 integrins in keratinocyte cell-cell interactions. J Cell Biol. 1990 Mar;110(3):803–815. doi: 10.1083/jcb.110.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lavker R. M., Sun T. T. Epidermal stem cells. J Invest Dermatol. 1983 Jul;81(1 Suppl):121s–127s. doi: 10.1111/1523-1747.ep12540880. [DOI] [PubMed] [Google Scholar]
  25. Lavker R. M., Sun T. T. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science. 1982 Mar 5;215(4537):1239–1241. doi: 10.1126/science.7058342. [DOI] [PubMed] [Google Scholar]
  26. Morganroth G. S., Chan L. S., Weinstein G. D., Voorhees J. J., Cooper K. D. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells. J Invest Dermatol. 1991 Mar;96(3):333–340. doi: 10.1111/1523-1747.ep12465237. [DOI] [PubMed] [Google Scholar]
  27. Morhenn V. B., Schreiber A. B., Soriero O., McMillan W., Allison A. C. A monoclonal antibody against basal cells of human epidermis. Potential use in the diagnosis of cervical neoplasia. J Clin Invest. 1985 Nov;76(5):1978–1983. doi: 10.1172/JCI112197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morimoto C., Letvin N. L., Boyd A. W., Hagan M., Brown H. M., Kornacki M. M., Schlossman S. F. The isolation and characterization of the human helper inducer T cell subset. J Immunol. 1985 Jun;134(6):3762–3769. [PubMed] [Google Scholar]
  29. Pavlovitch J. H., Rizk-Rabin M., Jaffray P., Hoehn H., Poot M. Characteristics of homogeneously small keratinocytes from newborn rat skin: possible epidermal stem cells. Am J Physiol. 1991 Dec;261(6 Pt 1):C964–C972. doi: 10.1152/ajpcell.1991.261.6.C964. [DOI] [PubMed] [Google Scholar]
  30. Penneys N. S., Fulton J. E., Jr, Weinstein G. D., Frost P. Location of proliferating cells in human epidermis. Arch Dermatol. 1970 Mar;101(3):323–327. [PubMed] [Google Scholar]
  31. Pinkus H., Hunter R. The direction of the mitotic axis in human epidermis. Arch Dermatol. 1966 Sep;94(3):351–354. [PubMed] [Google Scholar]
  32. Posnett D. N., Marboe C. C., Knowles D. M., 2nd, Jaffe E. A., Kunkel H. G. A membrane antigen (HC1) selectively present on hairy cell leukemia cells, endothelial cells, and epidermal basal cells. J Immunol. 1984 Jun;132(6):2700–2702. [PubMed] [Google Scholar]
  33. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  34. Régnier M., Vaigot P., Darmon M., Pruniéras M. Onset of epidermal differentiation in rapidly proliferating basal keratinocytes. J Invest Dermatol. 1986 Oct;87(4):472–476. doi: 10.1111/1523-1747.ep12455517. [DOI] [PubMed] [Google Scholar]
  35. Schwartz P. M., Barnett S. K., Reuveni H. Thymidine salvage changes with differentiation in human keratinocytes in vitro. J Invest Dermatol. 1991 Dec;97(6):1057–1060. doi: 10.1111/1523-1747.ep12492583. [DOI] [PubMed] [Google Scholar]
  36. Sonnenberg A., Calafat J., Janssen H., Daams H., van der Raaij-Helmer L. M., Falcioni R., Kennel S. J., Aplin J. D., Baker J., Loizidou M. Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol. 1991 May;113(4):907–917. doi: 10.1083/jcb.113.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sonnenberg A., Linders C. J., Daams J. H., Kennel S. J. The alpha 6 beta 1 (VLA-6) and alpha 6 beta 4 protein complexes: tissue distribution and biochemical properties. J Cell Sci. 1990 Jun;96(Pt 2):207–217. doi: 10.1242/jcs.96.2.207. [DOI] [PubMed] [Google Scholar]
  38. Staiano-Coico L., Gottlieb A. B., Barazani L., Carter D. M. RNA, DNA, and cell surface characteristics of lesional and nonlesional psoriatic skin. J Invest Dermatol. 1987 May;88(5):646–651. doi: 10.1111/1523-1747.ep12470257. [DOI] [PubMed] [Google Scholar]
  39. Staiano-Coico L., Higgins P. J., Darzynkiewicz Z., Kimmel M., Gottlieb A. B., Pagan-Charry I., Madden M. R., Finkelstein J. L., Hefton J. M. Human keratinocyte culture. Identification and staging of epidermal cell subpopulations. J Clin Invest. 1986 Feb;77(2):396–404. doi: 10.1172/JCI112317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Staquet M. J., Dezutter-Dambuyant C., Zambruno G., Schmitt D. Human epidermal basal keratinocytes express CDw29 antigens. Br J Dermatol. 1989 Nov;121(5):577–585. doi: 10.1111/j.1365-2133.1989.tb08189.x. [DOI] [PubMed] [Google Scholar]
  41. Stoler A., Kopan R., Duvic M., Fuchs E. Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol. 1988 Aug;107(2):427–446. doi: 10.1083/jcb.107.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Taylor R. S., Baadsgaard O., Hammerberg C., Cooper K. D. Hyperstimulatory CD1a+CD1b+CD36+ Langerhans cells are responsible for increased autologous T lymphocyte reactivity to lesional epidermal cells of patients with atopic dermatitis. J Immunol. 1991 Dec 1;147(11):3794–3802. [PubMed] [Google Scholar]
  43. Tseng S. C., Jarvinen M. J., Nelson W. G., Huang J. W., Woodcock-Mitchell J., Sun T. T. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 1982 Sep;30(2):361–372. doi: 10.1016/0092-8674(82)90234-3. [DOI] [PubMed] [Google Scholar]
  44. Viac J., Staquet M. J., Thivolet J., Goujon C. Experimental production of antibodies against stratum corneum keratin polypeptides. Arch Dermatol Res. 1980;267(2):179–188. doi: 10.1007/BF00569104. [DOI] [PubMed] [Google Scholar]
  45. Weinstein G. D. Letter: On the cell cycle of psoriasis. Br J Dermatol. 1975 Feb;92(2):229–231. doi: 10.1111/j.1365-2133.1975.tb03065.x. [DOI] [PubMed] [Google Scholar]
  46. Weinstein G. D., McCullough J. L., Ross P. A. Cell kinetic basis for pathophysiology of psoriasis. J Invest Dermatol. 1985 Dec;85(6):579–583. doi: 10.1111/1523-1747.ep12283594. [DOI] [PubMed] [Google Scholar]
  47. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T. T. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):580–588. doi: 10.1083/jcb.95.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zambruno G., Manca V., Santantonio M. L., Soligo D., Giannetti A. VLA protein expression on epidermal cells (keratinocytes, Langerhans cells, melanocytes): a light and electron microscopic immunohistochemical study. Br J Dermatol. 1991 Feb;124(2):135–145. doi: 10.1111/j.1365-2133.1991.tb00422.x. [DOI] [PubMed] [Google Scholar]
  49. van Neste D., Staquet M. J., Viac J., Lachapelle J. M., Thivolet J. A new way to evaluate the germinative compartment in human epidermis, using [3H]thymidine incorporation and immunoperoxidase staining of 67 K polypeptide. Br J Dermatol. 1983 Apr;108(4):433–439. doi: 10.1111/j.1365-2133.1983.tb04595.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES