Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Oct 1;178(4):1255–1261. doi: 10.1084/jem.178.4.1255

Listeria meningitis: identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin 10

PMCID: PMC2191197  PMID: 8376933

Abstract

The killing of bacteria gaining access to the central nervous system is insufficient and requires bactericidal antibiotics for treatment. The inefficient host response in cerebrospinal fluid (CSF) is thought to be due to impaired phagocytosis in CSF, and low local concentration of antibody and complement. In addition, the CSF may contain inhibitors, disabling phagocytes to eliminate bacteria. We have assessed the bactericidal activity of macrophages in the presence of CSF from mice infected intracerebrally with Listeria monocytogenes (LM). Pretreatment of J774A.1 macrophages with interferon gamma (IFN-gamma) resulted in high levels of nitric oxide-dependent intracellular killing of LM. CSF taken from mice 24 h after infection (CSF-LM 24) contained IFN-gamma and induced killing of LM by macrophages. However, pulsing J774A.1 cells with IFN-gamma in the presence of CSF obtained from mice at later time points (48 h) rendered macrophages partly permissive for intracellular Listeria growth. The inhibitor detected in CSF-LM 48 was identified as IL-10 since: (a) IL-10 dose dependently impaired the listericidal activity of IFN-gamma-activated macrophages; (b) anti-IL- 10 antibodies abrogated the bacterial growth permissive effect of CSF- LM 48; and (c) IL-10 was detected in CSF-LM 48 but not in CSF-LM 24 or CSF of mock-injected animals (CSF-Co). Likewise, IL-10 was found in the CSF of 95% of patients with bacterial meningitis.

Full Text

The Full Text of this article is available as a PDF (760.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. B., Hibbs J. B., Jr, Taintor R. R., Krahenbuhl J. L. Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. Role for synthesis of inorganic nitrogen oxides from L-arginine. J Immunol. 1990 Apr 1;144(7):2725–2729. [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. doi: 10.1056/NEJM197803302981305. [DOI] [PubMed] [Google Scholar]
  3. Beckerman K. P., Rogers H. W., Corbett J. A., Schreiber R. D., McDaniel M. L., Unanue E. R. Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes. J Immunol. 1993 Feb 1;150(3):888–895. [PubMed] [Google Scholar]
  4. Bogdan C., Paik J., Vodovotz Y., Nathan C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem. 1992 Nov 15;267(32):23301–23308. [PubMed] [Google Scholar]
  5. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991 Dec 1;174(6):1549–1555. doi: 10.1084/jem.174.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carp R. I., Davidson A. L., Merz P. A. A method for obtaining cerebrospinal fluid from mice. Res Vet Sci. 1971 Sep;12(5):499–499. [PubMed] [Google Scholar]
  7. Cunha F. Q., Moncada S., Liew F. Y. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1155–1159. doi: 10.1016/0006-291x(92)91852-h. [DOI] [PubMed] [Google Scholar]
  8. Denis M., Gregg E. O. Identification of cytokines which enhance (CSF-1, IL-3) or restrict (IFN-gamma) growth of intramacrophage Listeria monocytogenes. Immunol Lett. 1991 Mar;27(3):237–242. doi: 10.1016/0165-2478(91)90158-7. [DOI] [PubMed] [Google Scholar]
  9. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  10. Ernst J. D., Decazes J. M., Sande M. A. Experimental pneumococcal meningitis: role of leukocytes in pathogenesis. Infect Immun. 1983 Jul;41(1):275–279. doi: 10.1128/iai.41.1.275-279.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fiorentino D. F., Zlotnik A., Mosmann T. R., Howard M., O'Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol. 1991 Dec 1;147(11):3815–3822. [PubMed] [Google Scholar]
  12. Flesch I. E., Kaufmann S. H. Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect Immun. 1991 Sep;59(9):3213–3218. doi: 10.1128/iai.59.9.3213-3218.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frei K., Leist T. P., Meager A., Gallo P., Leppert D., Zinkernagel R. M., Fontana A. Production of B cell stimulatory factor-2 and interferon gamma in the central nervous system during viral meningitis and encephalitis. Evaluation in a murine model infection and in patients. J Exp Med. 1988 Jul 1;168(1):449–453. doi: 10.1084/jem.168.1.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frei K., Piani D., Malipiero U. V., Van Meir E., de Tribolet N., Fontana A. Granulocyte-macrophage colony-stimulating factor (GM-CSF) production by glioblastoma cells. Despite the presence of inducing signals GM-CSF is not expressed in vivo. J Immunol. 1992 May 15;148(10):3140–3146. [PubMed] [Google Scholar]
  15. Gallo P., Pagni S., Giometto B., Piccinno M. G., Bozza F., Argentiero V., Tavolato B. Macrophage-colony stimulating factor (M-CSF) in the cerebrospinal fluid. J Neuroimmunol. 1990 Sep-Oct;29(1-3):105–112. doi: 10.1016/0165-5728(90)90152-d. [DOI] [PubMed] [Google Scholar]
  16. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J Clin Invest. 1988 Apr;81(4):1129–1136. doi: 10.1172/JCI113427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Green S. J., Meltzer M. S., Hibbs J. B., Jr, Nacy C. A. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J Immunol. 1990 Jan 1;144(1):278–283. [PubMed] [Google Scholar]
  18. Gérard C., Bruyns C., Marchant A., Abramowicz D., Vandenabeele P., Delvaux A., Fiers W., Goldman M., Velu T. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med. 1993 Feb 1;177(2):547–550. doi: 10.1084/jem.177.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Helzlsouer K. J., Gordon G. B., Alberg A. J., Bush T. L., Comstock G. W. Relationship of prediagnostic serum levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate to the risk of developing premenopausal breast cancer. Cancer Res. 1992 Jan 1;52(1):1–4. [PubMed] [Google Scholar]
  20. Howard M., Muchamuel T., Andrade S., Menon S. Interleukin 10 protects mice from lethal endotoxemia. J Exp Med. 1993 Apr 1;177(4):1205–1208. doi: 10.1084/jem.177.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kennedy M. K., Torrance D. S., Picha K. S., Mohler K. M. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol. 1992 Oct 1;149(7):2496–2505. [PubMed] [Google Scholar]
  22. Leist T. P., Frei K., Kam-Hansen S., Zinkernagel R. M., Fontana A. Tumor necrosis factor alpha in cerebrospinal fluid during bacterial, but not viral, meningitis. Evaluation in murine model infections and in patients. J Exp Med. 1988 May 1;167(5):1743–1748. doi: 10.1084/jem.167.5.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malawista S. E., Montgomery R. R., van Blaricom G. Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts. A new microbicidal pathway for polymorphonuclear leukocytes. J Clin Invest. 1992 Aug;90(2):631–636. doi: 10.1172/JCI115903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mustafa M. M., Lebel M. H., Ramilo O., Olsen K. D., Reisch J. S., Beutler B., McCracken G. H., Jr Correlation of interleukin-1 beta and cachectin concentrations in cerebrospinal fluid and outcome from bacterial meningitis. J Pediatr. 1989 Aug;115(2):208–213. doi: 10.1016/s0022-3476(89)80067-8. [DOI] [PubMed] [Google Scholar]
  25. Nadal D., Leppert D., Frei K., Gallo P., Lamche H., Fontana A. Tumour necrosis factor-alpha in infectious meningitis. Arch Dis Child. 1989 Sep;64(9):1274–1279. doi: 10.1136/adc.64.9.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ramilo O., Sáez-Llorens X., Mertsola J., Jafari H., Olsen K. D., Hansen E. J., Yoshinaga M., Ohkawara S., Nariuchi H., McCracken G. H., Jr Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J Exp Med. 1990 Aug 1;172(2):497–507. doi: 10.1084/jem.172.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saukkonen K., Sande S., Cioffe C., Wolpe S., Sherry B., Cerami A., Tuomanen E. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med. 1990 Feb 1;171(2):439–448. doi: 10.1084/jem.171.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scheld W. M. Bacterial meningitis in the patient at risk: intrinsic risk factors and host defense mechanisms. Am J Med. 1984 May 15;76(5A):193–207. doi: 10.1016/0002-9343(84)90265-1. [DOI] [PubMed] [Google Scholar]
  29. Silva J. S., Morrissey P. J., Grabstein K. H., Mohler K. M., Anderson D., Reed S. G. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med. 1992 Jan 1;175(1):169–174. doi: 10.1084/jem.175.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sáez-Llorens X., Ramilo O., Mustafa M. M., Mertsola J., McCracken G. H., Jr Molecular pathophysiology of bacterial meningitis: current concepts and therapeutic implications. J Pediatr. 1990 May;116(5):671–684. doi: 10.1016/s0022-3476(05)82647-2. [DOI] [PubMed] [Google Scholar]
  31. Thompson-Snipes L., Dhar V., Bond M. W., Mosmann T. R., Moore K. W., Rennick D. M. Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J Exp Med. 1991 Feb 1;173(2):507–510. doi: 10.1084/jem.173.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waage A., Halstensen A., Shalaby R., Brandtzaeg P., Kierulf P., Espevik T. Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J Exp Med. 1989 Dec 1;170(6):1859–1867. doi: 10.1084/jem.170.6.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wood W. B., Smith M. R., Watson B. STUDIES ON THE MECHANISM OF RECOVERY IN PNEUMOCOCCAL PNEUMONIA : IV. THE MECHANISM OF PHAGOCYTOSIS IN THE ABSENCE OF ANTIBODY. J Exp Med. 1946 Sep 30;84(4):387–402. doi: 10.1084/jem.84.4.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Waal Malefyt R., Abrams J., Bennett B., Figdor C. G., de Vries J. E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991 Nov 1;174(5):1209–1220. doi: 10.1084/jem.174.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES