Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Nov 1;178(5):1675–1680. doi: 10.1084/jem.178.5.1675

Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease

PMCID: PMC2191262  PMID: 8228814

Abstract

How peptide-major histocompatibility complex (MHC) class II complexes are naturally generated is still unknown, but accumulating evidence suggests that unfolding proteins or long peptides can become bound to class II molecules at the dominant determinant before proteolytic cleavage. We have compared the immunogenicity of hen egg-white lysozyme (HEL) in nonobese diabetic (NOD), (NOD x BALB/c)F1, and E(d) alpha transgenic NOD mice. We find that a response to the subdominant ANOD- restricted determinant disappears upon introduction of an E(d) molecule, and is restored when scission of HEL separates this determinant from its adjoining, competitively dominant, E(d)-restricted determinant. This suggests that the E(d) molecule binds and protects its dominant determinant on a long peptide while captured neighboring determinants are lost during proteolysis. These results provide clear evidence for "determinant capture" as a mechanism of determinant selection during antigen processing and a possible explanation for MHC- protective effects in insulin-dependent diabetes mellitus.

Full Text

The Full Text of this article is available as a PDF (644.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acha-Orbea H., McDevitt H. O. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2435–2439. doi: 10.1073/pnas.84.8.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Acha-Orbea H., Scarpellino L. Nonobese diabetic and nonobese nondiabetic mice have unique MHC class II haplotypes. Immunogenetics. 1991;34(1):57–59. doi: 10.1007/BF00212313. [DOI] [PubMed] [Google Scholar]
  3. Adorini L., Appella E., Doria G., Nagy Z. A. Mechanisms influencing the immunodominance of T cell determinants. J Exp Med. 1988 Dec 1;168(6):2091–2104. doi: 10.1084/jem.168.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adorini L., Sette A., Buus S., Grey H. M., Darsley M., Lehmann P. V., Doria G., Nagy Z. A., Appella E. Interaction of an immunodominant epitope with Ia molecules in T-cell activation. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5181–5185. doi: 10.1073/pnas.85.14.5181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baisch J. M., Weeks T., Giles R., Hoover M., Stastny P., Capra J. D. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med. 1990 Jun 28;322(26):1836–1841. doi: 10.1056/NEJM199006283222602. [DOI] [PubMed] [Google Scholar]
  6. Bhardwaj V., Kumar V., Geysen H. M., Sercarz E. E. Subjugation of dominant immunogenic determinants within a chimeric peptide. Eur J Immunol. 1992 Aug;22(8):2009–2016. doi: 10.1002/eji.1830220809. [DOI] [PubMed] [Google Scholar]
  7. Buus S., Sette A., Colon S. M., Grey H. M. Autologous peptides constitutively occupy the antigen binding site on Ia. Science. 1988 Nov 18;242(4881):1045–1047. doi: 10.1126/science.3194755. [DOI] [PubMed] [Google Scholar]
  8. Böhme J., Schuhbaur B., Kanagawa O., Benoist C., Mathis D. MHC-linked protection from diabetes dissociated from clonal deletion of T cells. Science. 1990 Jul 20;249(4966):293–295. doi: 10.1126/science.2115690. [DOI] [PubMed] [Google Scholar]
  9. Davidson H. W., Reid P. A., Lanzavecchia A., Watts C. Processed antigen binds to newly synthesized MHC class II molecules in antigen-specific B lymphocytes. Cell. 1991 Oct 4;67(1):105–116. doi: 10.1016/0092-8674(91)90575-j. [DOI] [PubMed] [Google Scholar]
  10. Donermeyer D. L., Allen P. M. Binding to Ia protects an immunogenic peptide from proteolytic degradation. J Immunol. 1989 Feb 15;142(4):1063–1068. [PubMed] [Google Scholar]
  11. Erlich H. A., Griffith R. L., Bugawan T. L., Ziegler R., Alper C., Eisenbarth G. Implication of specific DQB1 alleles in genetic susceptibility and resistance by identification of IDDM siblings with novel HLA-DQB1 allele and unusual DR2 and DR1 haplotypes. Diabetes. 1991 Apr;40(4):478–481. doi: 10.2337/diab.40.4.478. [DOI] [PubMed] [Google Scholar]
  12. Erlich H. A., Zeidler A., Chang J., Shaw S., Raffel L. J., Klitz W., Beshkov Y., Costin G., Pressman S., Bugawan T. HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus in Mexican-American families. Nat Genet. 1993 Apr;3(4):358–364. doi: 10.1038/ng0493-358. [DOI] [PubMed] [Google Scholar]
  13. Gammon G., Geysen H. M., Apple R. J., Pickett E., Palmer M., Ametani A., Sercarz E. E. T cell determinant structure: cores and determinant envelopes in three mouse major histocompatibility complex haplotypes. J Exp Med. 1991 Mar 1;173(3):609–617. doi: 10.1084/jem.173.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunt D. F., Michel H., Dickinson T. A., Shabanowitz J., Cox A. L., Sakaguchi K., Appella E., Grey H. M., Sette A. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science. 1992 Jun 26;256(5065):1817–1820. doi: 10.1126/science.1319610. [DOI] [PubMed] [Google Scholar]
  15. Hurtenbach U., Lier E., Adorini L., Nagy Z. A. Prevention of autoimmune diabetes in non-obese diabetic mice by treatment with a class II major histocompatibility complex-blocking peptide. J Exp Med. 1993 May 1;177(5):1499–1504. doi: 10.1084/jem.177.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jensen P. E. Acidification and disulfide reduction can be sufficient to allow intact proteins to bind class II MHC. J Immunol. 1993 Apr 15;150(8 Pt 1):3347–3356. [PubMed] [Google Scholar]
  17. Lee P., Matsueda G. R., Allen P. M. T cell recognition of fibrinogen. A determinant on the A alpha-chain does not require processing. J Immunol. 1988 Feb 15;140(4):1063–1068. [PubMed] [Google Scholar]
  18. Lund T., O'Reilly L., Hutchings P., Kanagawa O., Simpson E., Gravely R., Chandler P., Dyson J., Picard J. K., Edwards A. Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature. 1990 Jun 21;345(6277):727–729. doi: 10.1038/345727a0. [DOI] [PubMed] [Google Scholar]
  19. Maeji N. J., Bray A. M., Geysen H. M. Multi-pin peptide synthesis strategy for T cell determinant analysis. J Immunol Methods. 1990 Nov 6;134(1):23–33. doi: 10.1016/0022-1759(90)90108-8. [DOI] [PubMed] [Google Scholar]
  20. Miyazaki T., Uno M., Uehira M., Kikutani H., Kishimoto T., Kimoto M., Nishimoto H., Miyazaki J., Yamamura K. Direct evidence for the contribution of the unique I-ANOD to the development of insulitis in non-obese diabetic mice. Nature. 1990 Jun 21;345(6277):722–724. doi: 10.1038/345722a0. [DOI] [PubMed] [Google Scholar]
  21. Mouritsen S., Meldal M., Werdelin O., Hansen A. S., Buus S. MHC molecules protect T cell epitopes against proteolytic destruction. J Immunol. 1992 Sep 15;149(6):1987–1993. [PubMed] [Google Scholar]
  22. Nepom G. T. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes. 1990 Oct;39(10):1153–1157. doi: 10.2337/diab.39.10.1153. [DOI] [PubMed] [Google Scholar]
  23. Nishimoto H., Kikutani H., Yamamura K., Kishimoto T. Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. 1987 Jul 30-Aug 5Nature. 328(6129):432–434. doi: 10.1038/328432a0. [DOI] [PubMed] [Google Scholar]
  24. Panina-Bordignon P., Tan A., Termijtelen A., Demotz S., Corradin G., Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol. 1989 Dec;19(12):2237–2242. doi: 10.1002/eji.1830191209. [DOI] [PubMed] [Google Scholar]
  25. Reich E. P., Sherwin R. S., Kanagawa O., Janeway C. A., Jr An explanation for the protective effect of the MHC class II I-E molecule in murine diabetes. Nature. 1989 Sep 28;341(6240):326–328. doi: 10.1038/341326a0. [DOI] [PubMed] [Google Scholar]
  26. Rudensky AYu, Preston-Hurlburt P., Hong S. C., Barlow A., Janeway C. A., Jr Sequence analysis of peptides bound to MHC class II molecules. Nature. 1991 Oct 17;353(6345):622–627. doi: 10.1038/353622a0. [DOI] [PubMed] [Google Scholar]
  27. Sette A., Adorini L., Colon S. M., Buus S., Grey H. M. Capacity of intact proteins to bind to MHC class II molecules. J Immunol. 1989 Aug 15;143(4):1265–1267. [PubMed] [Google Scholar]
  28. Sinigaglia F., Guttinger M., Kilgus J., Doran D. M., Matile H., Etlinger H., Trzeciak A., Gillessen D., Pink J. R. A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature. 1988 Dec 22;336(6201):778–780. doi: 10.1038/336778a0. [DOI] [PubMed] [Google Scholar]
  29. Slattery R. M., Kjer-Nielsen L., Allison J., Charlton B., Mandel T. E., Miller J. F. Prevention of diabetes in non-obese diabetic I-Ak transgenic mice. Nature. 1990 Jun 21;345(6277):724–726. doi: 10.1038/345724a0. [DOI] [PubMed] [Google Scholar]
  30. Wang Y., Smith J. A., Gefter M. L., Perkins D. L. Immunodominance: intermolecular competition between MHC class II molecules by covalently linked T cell epitopes. J Immunol. 1992 May 15;148(10):3034–3041. [PubMed] [Google Scholar]
  31. Werdelin O. Determinant protection. A hypothesis for the activity of immune response genes in the processing and presentation of antigens by macrophages. Scand J Immunol. 1986 Dec;24(6):625–636. doi: 10.1111/j.1365-3083.1986.tb02181.x. [DOI] [PubMed] [Google Scholar]
  32. Wicker L. S., Miller B. J., Coker L. Z., McNally S. E., Scott S., Mullen Y., Appel M. C. Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med. 1987 Jun 1;165(6):1639–1654. doi: 10.1084/jem.165.6.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES