Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Dec 1;178(6):2023–2033. doi: 10.1084/jem.178.6.2023

Developmental regulation of a mucinlike glycoprotein selectively expressed on natural killer cells

PMCID: PMC2191265  PMID: 7504054

Abstract

Natural killer (NK) cells are CD3:TCR-, CD16+, CD56+ large granular lymphocytes capable of recognizing and eliminating a variety of virus- infected, malignant, and antibody-coated target cells. Two functionally distinct populations of peripheral blood NK cells can be differentiated by their surface expression of an isoform of the neural cell adhesion molecule (CD56). CD56bright NK cells have the attributes of an undifferentiated cell, in that they proliferate in response to exogenous cytokines, but exert poor cytolytic activity. CD56dim NK cells have the attributes of a more differentiated cell, in that they proliferate poorly in response to exogenous cytokines, but are potent cytolytic effector cells. Here we describe the molecular characterization of a NK cell restricted epitope (PEN5) that is selectively expressed on the functionally differentiated CD56dim NK cells. PEN5+ NK cells proliferate poorly in response to interleukin 2 (IL-2), but are potent cytolytic effectors, whereas PEN5- NK cells proliferate in response to IL-2, but are poor cytolytic effectors. Biochemical and immunochemical analyses reveal the PEN5 epitope to be an unusual sulfated poly-N-lactosamine carbohydrate related to keratan sulfate glycosaminoglycans. Immunoprecipitates prepared using a monoclonal antibody reactive with PEN5 include two polydisperse membrane-bound glycoproteins, PEN5 alpha (120-170 kD) and PEN5 beta (210-245 kD). Enzymatic deglycosylation reduces the apparent molecular weight of both PEN5 isoforms by 80-90%, and classifies PEN5 beta as a mucinlike glycoprotein. The surface expression of the PEN5 epitope is downmodulated by stimuli that induce NK cell proliferation, and it is absent from leukemic NK cells of patients with granular lymphocyte proliferative disorder. Taken together, these results indicate that PEN5 is a developmentally regulated poly-N-lactosamine epitope associated with a mucin-type glycoprotein, whose expression is restricted to the population of nonproliferative NK cells fully committed to cytolytic effector function.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Blue M. L., O'Brien C., Schlossman S. F. Monoclonal antibodies reactive with the T cell receptor zeta chain: production and characterization using a new method. J Immunol. 1989 Sep 15;143(6):1899–1904. [PubMed] [Google Scholar]
  2. Anderson P., Blue M. L., Schlossman S. F. Comodulation of CD3 and CD4. Evidence for a specific association between CD4 and approximately 5% of the CD3:T cell receptor complexes on helper T lymphocytes. J Immunol. 1988 Mar 15;140(6):1732–1737. [PubMed] [Google Scholar]
  3. Blue M. L., Hafler D. A., Daley J. F., Levine H., Craig K. A., Breitmeyer J. B., Schlossman S. F. Regulation of T cell clone function via CD4 and CD8 molecules. Anti-CD4 can mediate two distinct inhibitory activities. J Immunol. 1988 Jan 15;140(2):376–383. [PubMed] [Google Scholar]
  4. Caterson B., Christner J. E., Baker J. R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem. 1983 Jul 25;258(14):8848–8854. [PubMed] [Google Scholar]
  5. Freedman A. S., Munro J. M., Rice G. E., Bevilacqua M. P., Morimoto C., McIntyre B. W., Rhynhart K., Pober J. S., Nadler L. M. Adhesion of human B cells to germinal centers in vitro involves VLA-4 and INCAM-110. Science. 1990 Aug 31;249(4972):1030–1033. doi: 10.1126/science.1697696. [DOI] [PubMed] [Google Scholar]
  6. Funderburgh J. L., Caterson B., Conrad G. W. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem. 1987 Aug 25;262(24):11634–11640. [PubMed] [Google Scholar]
  7. Funderburgh J. L., Funderburgh M. L., Mann M. M., Conrad G. W. Physical and biological properties of keratan sulphate proteoglycan. Biochem Soc Trans. 1991 Nov;19(4):871–876. doi: 10.1042/bst0190871. [DOI] [PubMed] [Google Scholar]
  8. Hayes D. F., Silberstein D. S., Rodrique S. W., Kufe D. W. DF3 antigen, a human epithelial cell mucin, inhibits adhesion of eosinophils to antibody-coated targets. J Immunol. 1990 Aug 1;145(3):962–970. [PubMed] [Google Scholar]
  9. Hök M., Kjellén L., Johansson S. Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
  10. Ito M., Hirabayashi Y., Yamagata T. Substrate specificity of endo-beta-galactosidases from Flavobacterium keratolyticus and Escherichia freundii is different from that of Pseudomonas sp. J Biochem. 1986 Sep;100(3):773–780. doi: 10.1093/oxfordjournals.jbchem.a121770. [DOI] [PubMed] [Google Scholar]
  11. Jessell T. M., Hynes M. A., Dodd J. Carbohydrates and carbohydrate-binding proteins in the nervous system. Annu Rev Neurosci. 1990;13:227–255. doi: 10.1146/annurev.ne.13.030190.001303. [DOI] [PubMed] [Google Scholar]
  12. Kornbluth J., Flomenberg N., Dupont B. Cell surface phenotype of a cloned line of human natural killer cells. J Immunol. 1982 Dec;129(6):2831–2837. [PubMed] [Google Scholar]
  13. Kuijpers T. W. Terminal glycosyltransferase activity: a selective role in cell adhesion. Blood. 1993 Feb 15;81(4):873–882. [PubMed] [Google Scholar]
  14. Leprince C., Cohen-Kaminsky S., Berrih-Aknin S., Vernet-Der Garabedian B., Treton D., Galanaud P., Richard Y. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990 Oct 1;145(7):2115–2122. [PubMed] [Google Scholar]
  15. Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989 Nov 15;143(10):3183–3191. [PubMed] [Google Scholar]
  16. Oeben M., Keller R., Stuhlsatz H. W., Greiling H. Constant and variable domains of different disaccharide structure in corneal keratan sulphate chains. Biochem J. 1987 Nov 15;248(1):85–93. doi: 10.1042/bj2480085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ogata S., Maimonis P. J., Itzkowitz S. H. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res. 1992 Sep 1;52(17):4741–4746. [PubMed] [Google Scholar]
  18. Perussia B., Trinchieri G. Antibody 3G8, specific for the human neutrophil Fc receptor, reacts with natural killer cells. J Immunol. 1984 Mar;132(3):1410–1415. [PubMed] [Google Scholar]
  19. Phillips J. H., Hori T., Nagler A., Bhat N., Spits H., Lanier L. L. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins. J Exp Med. 1992 Apr 1;175(4):1055–1066. doi: 10.1084/jem.175.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Piller F., Piller V., Fox R. I., Fukuda M. Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem. 1988 Oct 15;263(29):15146–15150. [PubMed] [Google Scholar]
  21. Ravetch J. V., Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989 Aug 1;170(2):481–497. doi: 10.1084/jem.170.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robertson M. J., Manley T. J., Donahue C., Levine H., Ritz J. Costimulatory signals are required for optimal proliferation of human natural killer cells. J Immunol. 1993 Mar 1;150(5):1705–1714. [PubMed] [Google Scholar]
  23. Robertson M. J., Soiffer R. J., Wolf S. F., Manley T. J., Donahue C., Young D., Herrmann S. H., Ritz J. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med. 1992 Mar 1;175(3):779–788. doi: 10.1084/jem.175.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  25. Salem P., Deryckx S., Dulioust A., Vivier E., Denizot Y., Damais C., Dinarello C. A., Thomas Y. Immunoregulatory functions of paf-acether. IV. Enhancement of IL-1 production by muramyl dipeptide-stimulated monocytes. J Immunol. 1990 Feb 15;144(4):1338–1344. [PubMed] [Google Scholar]
  26. Sherblom A. P., Carraway K. L. A complex of two cell surface glycoproteins from ascites mammary adenocarcinoma cells. J Biol Chem. 1980 Dec 25;255(24):12051–12059. [PubMed] [Google Scholar]
  27. Sorrell J. M., Caterson B. Monoclonal antibodies specific for keratan sulfate detect epithelial-associated carbohydrates. Histochemistry. 1990;94(3):269–275. doi: 10.1007/BF00266627. [DOI] [PubMed] [Google Scholar]
  28. Strous G. J., Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol. 1992;27(1-2):57–92. doi: 10.3109/10409239209082559. [DOI] [PubMed] [Google Scholar]
  29. Vivier E., Morin P., O'Brien C., Druker B., Schlossman S. F., Anderson P. Tyrosine phosphorylation of the Fc gamma RIII(CD16): zeta complex in human natural killer cells. Induction by antibody-dependent cytotoxicity but not by natural killing. J Immunol. 1991 Jan 1;146(1):206–210. [PubMed] [Google Scholar]
  30. Vivier E., Morin P., Tian Q. S., Daley J., Blue M. L., Schlossman S. F., Anderson P. Expression and tyrosine phosphorylation of the T cell receptor zeta-subunit in human thymocytes. J Immunol. 1991 Feb 15;146(4):1142–1148. [PubMed] [Google Scholar]
  31. Vivier E., Rochet N., Ackerly M., Petrini J., Levine H., Daley J., Anderson P. Signaling function of reconstituted CD16: zeta: gamma receptor complex isoforms. Int Immunol. 1992 Nov;4(11):1313–1323. doi: 10.1093/intimm/4.11.1313. [DOI] [PubMed] [Google Scholar]
  32. Vivier E., Rochet N., Kochan J. P., Presky D. H., Schlossman S. F., Anderson P. Structural similarity between Fc receptors and T cell receptors. Expression of the gamma-subunit of Fc epsilon RI in human T cells, natural killer cells and thymocytes. J Immunol. 1991 Dec 15;147(12):4263–4270. [PubMed] [Google Scholar]
  33. Wu R., Plopper C. G., Cheng P. W. Mucin-like glycoprotein secreted by cultured hamster tracheal epithelial cells. Biochemical and immunological characterization. Biochem J. 1991 Aug 1;277(Pt 3):713–718. doi: 10.1042/bj2770713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985 Mar;134(3):1623–1630. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES