Abstract
This study was designed to investigate whether follicular dendritic cells (FDC) can activate B cells to a state in which they can function as effective antigen-presenting cells (APC). High buoyant density (i.e., resting) B cells specific for 2,4-dinitro-fluorobenzene (DNP) were incubated with DNP-ovalbumin (OVA) bearing FDC, after which their capacity to process and present to an OVA-specific T cell clone was assessed. The efficacies of alternative sources of antigen and activation signals in the induction of B cell APC function were compared with those provided by FDC. Only FDC and Sepharose beads coated with anti-immunoglobulin (Ig)kappa monoclonal antibody provided the necessary stimulus. FDC carrying inappropriate antigens also induced B cell APC function in the presence of exogenous DNP-OVA. However, in circumstances where soluble DNP-OVA was limiting, FDC bearing complexes containing DNP, which could crosslink B cell Ig receptors, induced the most potent APC function. Analysis by flow cytometry revealed that within 24 h of coculture with FDC, a significant percentage of B cells increased in size and expressed higher levels of major histocompatibility complex class II. By 48 h, an upregulation of the costimulatory molecule, B7/BB1, occurred, but only when exposed to the FDC bearing DNP. Taken together, the results demonstrate that FDC have the capacity to activate resting B cells to a state in which they can function as APC for T cells. The stimuli that FDC provide may include: (a) an antigen-dependent signal that influences the upregulation of B7/BB1; and (b) possibly a signal independent of crosslinking mIg that results in Ig internalization. The relevance of these findings to the formation of germinal centers and maintenance of the humoral response is discussed.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubry J. P., Pochon S., Graber P., Jansen K. U., Bonnefoy J. Y. CD21 is a ligand for CD23 and regulates IgE production. Nature. 1992 Aug 6;358(6386):505–507. doi: 10.1038/358505a0. [DOI] [PubMed] [Google Scholar]
- Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
- Butcher E. C., Rouse R. V., Coffman R. L., Nottenburg C. N., Hardy R. R., Weissman I. L. Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J Immunol. 1982 Dec;129(6):2698–2707. [PubMed] [Google Scholar]
- Cambier J. C., Ransom J. T. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu Rev Immunol. 1987;5:175–199. doi: 10.1146/annurev.iy.05.040187.001135. [DOI] [PubMed] [Google Scholar]
- Carter R. H., Fearon D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science. 1992 Apr 3;256(5053):105–107. doi: 10.1126/science.1373518. [DOI] [PubMed] [Google Scholar]
- Carter R. H., Fearon D. T. Polymeric C3dg primes human B lymphocytes for proliferation induced by anti-IgM. J Immunol. 1989 Sep 15;143(6):1755–1760. [PubMed] [Google Scholar]
- Chesnut R. W., Colon S. M., Grey H. M. Antigen presentation by normal B cells, B cell tumors, and macrophages: functional and biochemical comparison. J Immunol. 1982 Apr;128(4):1764–1768. [PubMed] [Google Scholar]
- Coico R. F., Bhogal B. S., Thorbecke G. J. Relationship of germinal centers in lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node cells fractionated according to their receptors for peanut agglutinin. J Immunol. 1983 Nov;131(5):2254–2257. [PubMed] [Google Scholar]
- Dintzis R. Z., Middleton M. H., Dintzis H. M. Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol. 1983 Nov;131(5):2196–2203. [PubMed] [Google Scholar]
- Erdei A., Melchers F., Schulz T., Dierich M. The action of human C3 in soluble or cross-linked form with resting and activated murine B lymphocytes. Eur J Immunol. 1985 Feb;15(2):184–188. doi: 10.1002/eji.1830150214. [DOI] [PubMed] [Google Scholar]
- Forni L. Extensive splenic B cell activation in IgM-transgenic mice. Eur J Immunol. 1990 May;20(5):983–989. doi: 10.1002/eji.1830200506. [DOI] [PubMed] [Google Scholar]
- Freedman A. S., Freeman G., Horowitz J. C., Daley J., Nadler L. M. B7, a B-cell-restricted antigen that identifies preactivated B cells. J Immunol. 1987 Nov 15;139(10):3260–3267. [PubMed] [Google Scholar]
- Frohman M., Cowing C. Presentation of antigen by B cells: functional dependence on radiation dose, interleukins, cellular activation, and differential glycosylation. J Immunol. 1985 Apr;134(4):2269–2275. [PubMed] [Google Scholar]
- Gray D., Chassoux D., MacLennan I. C., Bazin H. Selective depression of thymus-independent anti-DNP antibody responses induced by adult but not neonatal splenectomy. Clin Exp Immunol. 1985 Apr;60(1):78–86. [PMC free article] [PubMed] [Google Scholar]
- Gray D., Kosco M., Stockinger B. Novel pathways of antigen presentation for the maintenance of memory. Int Immunol. 1991 Feb;3(2):141–148. doi: 10.1093/intimm/3.2.141. [DOI] [PubMed] [Google Scholar]
- Gray D. Recruitment of virgin B cells into an immune response is restricted to activation outside lymphoid follicles. Immunology. 1988 Sep;65(1):73–79. [PMC free article] [PubMed] [Google Scholar]
- Grey H. M., Colon S. M., Chesnut R. W. Requirements for the processing of antigen by antigen-presenting B cells. II. Biochemical comparison of the fate of antigen in B cell tumors and macrophages. J Immunol. 1982 Dec;129(6):2389–2395. [PubMed] [Google Scholar]
- Jacob J., Kassir R., Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med. 1991 May 1;173(5):1165–1175. doi: 10.1084/jem.173.5.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob J., Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med. 1992 Sep 1;176(3):679–687. doi: 10.1084/jem.176.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob J., Kelsoe G., Rajewsky K., Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991 Dec 5;354(6352):389–392. doi: 10.1038/354389a0. [DOI] [PubMed] [Google Scholar]
- Klaus G. G., Humphrey J. H., Kunkl A., Dongworth D. W. The follicular dendritic cell: its role in antigen presentation in the generation of immunological memory. Immunol Rev. 1980;53:3–28. doi: 10.1111/j.1600-065x.1980.tb01038.x. [DOI] [PubMed] [Google Scholar]
- Kopf M., Le Gros G., Bachmann M., Lamers M. C., Bluethmann H., Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 1993 Mar 18;362(6417):245–248. doi: 10.1038/362245a0. [DOI] [PubMed] [Google Scholar]
- Kosco M. H., Burton G. F., Kapasi Z. F., Szakal A. K., Tew J. G. Antibody-forming cell induction during an early phase of germinal centre development and its delay with ageing. Immunology. 1989 Nov;68(3):312–318. [PMC free article] [PubMed] [Google Scholar]
- Kosco M. H., Gray D. Signals involved in germinal center reactions. Immunol Rev. 1992 Apr;126:63–76. doi: 10.1111/j.1600-065x.1992.tb00631.x. [DOI] [PubMed] [Google Scholar]
- Kosco M. H., Pflugfelder E., Gray D. Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro. J Immunol. 1992 Apr 15;148(8):2331–2339. [PubMed] [Google Scholar]
- Kosco M. H., Szakal A. K., Tew J. G. In vivo obtained antigen presented by germinal center B cells to T cells in vitro. J Immunol. 1988 Jan 15;140(2):354–360. [PubMed] [Google Scholar]
- Kraal G., Weissman I. L., Butcher E. C. Germinal centre B cells: antigen specificity and changes in heavy chain class expression. Nature. 1982 Jul 22;298(5872):377–379. doi: 10.1038/298377a0. [DOI] [PubMed] [Google Scholar]
- Krieger J. I., Grammer S. F., Grey H. M., Chesnut R. W. Antigen presentation by splenic B cells: resting B cells are ineffective, whereas activated B cells are effective accessory cells for T cell responses. J Immunol. 1985 Nov;135(5):2937–2945. [PubMed] [Google Scholar]
- Lane P., Gerhard W., Hubele S., Lanzavecchia A., McConnell F. Expression and functional properties of mouse B7/BB1 using a fusion protein between mouse CTLA4 and human gamma 1. Immunology. 1993 Sep;80(1):56–61. [PMC free article] [PubMed] [Google Scholar]
- Linsley P. S., Clark E. A., Ledbetter J. A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5031–5035. doi: 10.1073/pnas.87.13.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linton PJ L., Decker D. J., Klinman N. R. Primary antibody-forming cells and secondary B cells are generated from separate precursor cell subpopulations. Cell. 1989 Dec 22;59(6):1049–1059. doi: 10.1016/0092-8674(89)90761-7. [DOI] [PubMed] [Google Scholar]
- Liu Y. J., Johnson G. D., Gordon J., MacLennan I. C. Germinal centres in T-cell-dependent antibody responses. Immunol Today. 1992 Jan;13(1):17–21. doi: 10.1016/0167-5699(92)90199-H. [DOI] [PubMed] [Google Scholar]
- Liu Y. J., Zhang J., Lane P. J., Chan E. Y., MacLennan I. C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991 Dec;21(12):2951–2962. doi: 10.1002/eji.1830211209. [DOI] [PubMed] [Google Scholar]
- Melchers F., Erdei A., Schulz T., Dierich M. P. Growth control of activated, synchronized murine B cells by the C3d fragment of human complement. Nature. 1985 Sep 19;317(6034):264–267. doi: 10.1038/317264a0. [DOI] [PubMed] [Google Scholar]
- Monfalcone A. P., Szakal A. K., Tew J. G. Increased leukocyte diversity and responsiveness to B-cell and T-cell mitogens in cell suspensions prepared by enzymatically dissociating murine lymph nodes. J Leukoc Biol. 1986 Jun;39(6):617–628. doi: 10.1002/jlb.39.6.617. [DOI] [PubMed] [Google Scholar]
- Monroe J. G., Cambier J. C. B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes. J Exp Med. 1983 Jun 1;157(6):2073–2086. doi: 10.1084/jem.157.6.2073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers C. D., Kriz M. K., Sullivan T. J., Vitetta E. S. Antigen-induced changes in phospholipid metabolism in antigen-binding B lymphocytes. J Immunol. 1987 Mar 15;138(6):1705–1711. [PubMed] [Google Scholar]
- Noelle R. J., Snow E. C. Cognate interactions between helper T cells and B cells. Immunol Today. 1990 Oct;11(10):361–368. doi: 10.1016/0167-5699(90)90142-v. [DOI] [PubMed] [Google Scholar]
- Noelle R., Krammer P. H., Ohara J., Uhr J. W., Vitetta E. S. Increased expression of Ia antigens on resting B cells: an additional role for B-cell growth factor. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6149–6153. doi: 10.1073/pnas.81.19.6149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker D. C., Wadsworth D. C., Schneider G. B. Activation of murine B lymphocytes by anti-immunoglobulin is an inductive signal leading to immunoglobulin secretion. J Exp Med. 1980 Jul 1;152(1):138–150. doi: 10.1084/jem.152.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petrasch S. G., Kosco M. H., Perez-Alvarez C. J., Schmitz J., Brittinger G. Proliferation of germinal center B lymphocytes in vitro by direct membrane contact with follicular dendritic cells. Immunobiology. 1991 Nov;183(5):451–462. doi: 10.1016/S0171-2985(11)80528-0. [DOI] [PubMed] [Google Scholar]
- Ratcliffe M. J., Julius M. H. H-2-restricted T-B cell interactions involved in polyspecific B cell responses mediated by soluble antigen. Eur J Immunol. 1982 Aug;12(8):634–641. doi: 10.1002/eji.1830120803. [DOI] [PubMed] [Google Scholar]
- Roehm N. W., Leibson H. J., Zlotnik A., Kappler J., Marrack P., Cambier J. C. Interleukin-induced increase in Ia expression by normal mouse B cells. J Exp Med. 1984 Sep 1;160(3):679–694. doi: 10.1084/jem.160.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rusconi S., Köhler G. Transmission and expression of a specific pair of rearranged immunoglobulin mu and kappa genes in a transgenic mouse line. 1985 Mar 28-Apr 3Nature. 314(6009):330–334. doi: 10.1038/314330a0. [DOI] [PubMed] [Google Scholar]
- Schnizlein C. T., Kosco M. H., Szakal A. K., Tew J. G. Follicular dendritic cells in suspension: identification, enrichment, and initial characterization indicating immune complex trapping and lack of adherence and phagocytic activity. J Immunol. 1985 Mar;134(3):1360–1368. [PubMed] [Google Scholar]
- Schnizlein C. T., Szakal A. K., Tew J. G. Follicular dendritic cells in the regulation and maintenance of immune responses. Immunobiology. 1984 Dec;168(3-5):391–402. doi: 10.1016/S0171-2985(84)80125-4. [DOI] [PubMed] [Google Scholar]
- Schriever F., Nadler L. M. The central role of follicular dendritic cells in lymphoid tissues. Adv Immunol. 1992;51:243–284. doi: 10.1016/s0065-2776(08)60489-7. [DOI] [PubMed] [Google Scholar]
- Szakal A. K., Gieringer R. L., Kosco M. H., Tew J. G. Isolated follicular dendritic cells: cytochemical antigen localization, Nomarski, SEM, and TEM morphology. J Immunol. 1985 Mar;134(3):1349–1359. [PubMed] [Google Scholar]
- Szakal A. K., Kapasi Z. F., Masuda A., Tew J. G. Follicular dendritic cells in the alternative antigen transport pathway: microenvironment, cellular events, age and retrovirus related alterations. Semin Immunol. 1992 Aug;4(4):257–265. [PubMed] [Google Scholar]
- Szakal A. K., Kosco M. H., Tew J. G. A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-processing cells. J Immunol. 1988 Jan 15;140(2):341–353. [PubMed] [Google Scholar]
- Tew J. G., DiLosa R. M., Burton G. F., Kosco M. H., Kupp L. I., Masuda A., Szakal A. K. Germinal centers and antibody production in bone marrow. Immunol Rev. 1992 Apr;126:99–112. doi: 10.1111/j.1600-065x.1992.tb00633.x. [DOI] [PubMed] [Google Scholar]
- Tew J. G., Kosco M. H., Burton G. F., Szakal A. K. Follicular dendritic cells as accessory cells. Immunol Rev. 1990 Oct;117:185–211. doi: 10.1111/j.1600-065x.1990.tb00573.x. [DOI] [PubMed] [Google Scholar]
- Tew J. G., Phipps R. P., Mandel T. E. The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunol Rev. 1980;53:175–201. doi: 10.1111/j.1600-065x.1980.tb01044.x. [DOI] [PubMed] [Google Scholar]
- Tony H. P., Phillips N. E., Parker D. C. Role of membrane immunoglobulin (Ig) crosslinking in membrane Ig-mediated, major histocompatibility-restricted T cell-B cell cooperation. J Exp Med. 1985 Nov 1;162(5):1695–1708. doi: 10.1084/jem.162.5.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vonderheide R. H., Hunt S. V. Comparison of IgD+ and IgD- thoracic duct B lymphocytes as germinal center precursor cells in the rat. Int Immunol. 1991 Dec;3(12):1273–1281. doi: 10.1093/intimm/3.12.1273. [DOI] [PubMed] [Google Scholar]
- Young J. W., Steinman R. M. Accessory cell requirements for the mixed-leukocyte reaction and polyclonal mitogens, as studied with a new technique for enriching blood dendritic cells. Cell Immunol. 1988 Jan;111(1):167–182. doi: 10.1016/0008-8749(88)90061-5. [DOI] [PubMed] [Google Scholar]