Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Dec 1;178(6):2147–2156. doi: 10.1084/jem.178.6.2147

Fibrin(ogen) mediates acute inflammatory responses to biomaterials

PMCID: PMC2191295  PMID: 8245787

Abstract

Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altieri D. C., Agbanyo F. R., Plescia J., Ginsberg M. H., Edgington T. S., Plow E. F. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem. 1990 Jul 25;265(21):12119–12122. [PubMed] [Google Scholar]
  2. Baier R. E., Dutton R. C. Initial events in interactions of blood with a foreign surface. J Biomed Mater Res. 1969 Mar;3(1):191–206. doi: 10.1002/jbm.820030115. [DOI] [PubMed] [Google Scholar]
  3. Barcelli U., Rademacher P. R., Ooi B. S., Pollak V. E. Defibrination with ancrod: effect on reticuloendothelial clearance of circulating immune complexes. Nephron. 1982;30(4):314–317. doi: 10.1159/000182507. [DOI] [PubMed] [Google Scholar]
  4. Behling C. A., Spector M. Quantitative characterization of cells at the interface of long-term implants of selected polymers. J Biomed Mater Res. 1986 May-Jun;20(5):653–666. doi: 10.1002/jbm.820200509. [DOI] [PubMed] [Google Scholar]
  5. Behrens B. L., Clark R. A., Presley D. M., Graves J. P., Feldsien D. C., Larsen G. L. Comparison of the evolving histopathology of early and late cutaneous and asthmatic responses in rabbits after a single antigen challenge. Lab Invest. 1987 Jan;56(1):101–113. [PubMed] [Google Scholar]
  6. Bell W. R., Shapiro S. S., Martinez J., Nossel H. L. The effects of ancrod, the coagulating enzyme from the venom of Malayan pit viper (A. rhodostoma) on prothrombin and fibrinogen metabolism and fibrinopeptide A release in man. J Lab Clin Med. 1978 Apr;91(4):592–604. [PubMed] [Google Scholar]
  7. Berger K., Sauvage L. R., Rao A. M., Wood S. J. Healing of arterial prostheses in man: its incompleteness. Ann Surg. 1972 Jan;175(1):118–127. doi: 10.1097/00000658-197201000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 1984;105:429–435. doi: 10.1016/s0076-6879(84)05060-6. [DOI] [PubMed] [Google Scholar]
  9. Bozeman P. M., Learn D. B., Thomas E. L. Assay of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. J Immunol Methods. 1990 Jan 24;126(1):125–133. doi: 10.1016/0022-1759(90)90020-v. [DOI] [PubMed] [Google Scholar]
  10. Brohim R. M., Foresman P. A., Hildebrandt P. K., Rodeheaver G. T. Early tissue reaction to textured breast implant surfaces. Ann Plast Surg. 1992 Apr;28(4):354–362. doi: 10.1097/00000637-199204000-00010. [DOI] [PubMed] [Google Scholar]
  11. Chan S. C., Birdsell D. C., Gradeen C. Y. Detection of toluenediamines in the urine of a patient with polyurethane-covered breast implants. Clin Chem. 1991 May;37(5):756–758. [PubMed] [Google Scholar]
  12. Chinn J. A., Posso S. E., Horbett T. A., Ratner B. D. Postadsorptive transitions in fibrinogen adsorbed to biomer: changes in baboon platelet adhesion, antibody binding, and sodium dodecyl sulfate elutability. J Biomed Mater Res. 1991 Apr;25(4):535–555. doi: 10.1002/jbm.820250410. [DOI] [PubMed] [Google Scholar]
  13. Chinn J. A., Posso S. E., Horbett T. A., Ratner B. D. Postadsorptive transitions in fibrinogen adsorbed to polyurethanes: changes in antibody binding and sodium dodecyl sulfate elutability. J Biomed Mater Res. 1992 Jun;26(6):757–778. doi: 10.1002/jbm.820260606. [DOI] [PubMed] [Google Scholar]
  14. Christenson L., Aebischer P., McMillan P., Galletti P. M. Tissue reaction to intraperitoneal polymer implants: species difference and effects of corticoid and doxorubicin. J Biomed Mater Res. 1989 Jul;23(7):705–718. doi: 10.1002/jbm.820230704. [DOI] [PubMed] [Google Scholar]
  15. Cole E. H., Glynn M. F., Laskin C. A., Sweet J., Mason N., Levy G. A. Ancrod improves survival in murine systemic lupus erythematosus. Kidney Int. 1990 Jan;37(1):29–35. doi: 10.1038/ki.1990.4. [DOI] [PubMed] [Google Scholar]
  16. Colvin R. B., Johnson R. A., Mihm M. C., Jr, Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med. 1973 Sep 1;138(3):686–698. doi: 10.1084/jem.138.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cooper J. A., Lo S. K., Malik A. B. Fibrin is a determinant of neutrophil sequestration in the lung. Circ Res. 1988 Oct;63(4):735–741. doi: 10.1161/01.res.63.4.735. [DOI] [PubMed] [Google Scholar]
  18. Domanskis E., Owsley J. Q., Jr Histological investigation of the etiology of capsule contracture following augmentation mammaplasty. Plast Reconstr Surg. 1976 Dec;58(6):689–693. doi: 10.1097/00006534-197612000-00006. [DOI] [PubMed] [Google Scholar]
  19. ELLIS B. C., STRANSKY A. A quick and accurate method for the determination of fibronogen in plasma. J Lab Clin Med. 1961 Sep;58:477–488. [PubMed] [Google Scholar]
  20. Esnouf M. P., Tunnah G. W. The isolation and properties of the thrombin-like activity from Ancistrodon rhodostoma venom. Br J Haematol. 1967 Jul;13(4):581–590. doi: 10.1111/j.1365-2141.1967.tb00765.x. [DOI] [PubMed] [Google Scholar]
  21. Freyria A. M., Chignier E., Guidollet J., Louisot P. Peritoneal macrophage response: an in vivo model for the study of synthetic materials. Biomaterials. 1991 Mar;12(2):111–118. doi: 10.1016/0142-9612(91)90187-f. [DOI] [PubMed] [Google Scholar]
  22. Gonda S. R., Shainoff J. R. Adsorptive endocytosis of fibrin monomer by macrophages: evidence of a receptor for the amino terminus of the fibrin alpha chain. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4565–4569. doi: 10.1073/pnas.79.15.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gordon M., Bullough P. G. Synovial and osseous inflammation in failed silicone-rubber prostheses. J Bone Joint Surg Am. 1982 Apr;64(4):574–580. [PubMed] [Google Scholar]
  24. Grannis G. F. Plasma fibrinogen: determination, normal values, physiopathologic shifts, and fluctuations. Clin Chem. 1970 Jun;16(6):486–494. [PubMed] [Google Scholar]
  25. Guidoin R., Snyder R., Martin L., Botzko K., Marois M., Awad J., King M., Domurado D., Bedros M., Gosselin C. Albumin coating of a knitted polyester arterial prosthesis: an alternative to preclotting. Ann Thorac Surg. 1984 Jun;37(6):457–465. doi: 10.1016/s0003-4975(10)61131-9. [DOI] [PubMed] [Google Scholar]
  26. Gustafson E. J., Lukasiewicz H., Wachtfogel Y. T., Norton K. J., Schmaier A. H., Niewiarowski S., Colman R. W. High molecular weight kininogen inhibits fibrinogen binding to cytoadhesins of neutrophils and platelets. J Cell Biol. 1989 Jul;109(1):377–387. doi: 10.1083/jcb.109.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hamlin G. W., Rajah S. M., Crow M. J., Kester R. C. Evaluation of the thrombogenic potential of three types of arterial graft studied in an artificial circulation. Br J Surg. 1978 Apr;65(4):272–276. doi: 10.1002/bjs.1800650416. [DOI] [PubMed] [Google Scholar]
  28. Himmelhoch S. R., Evans W. H., Mage M. G., Peterson E. A. Purification of myeloperoxidases from the bone marrow of the guinea pig. Biochemistry. 1969 Mar;8(3):914–921. doi: 10.1021/bi00831a022. [DOI] [PubMed] [Google Scholar]
  29. Ihlenfeld J. V., Cooper S. L. Transient in vivo protein adsorption onto polymeric biomaterials. J Biomed Mater Res. 1979 Jul;13(4):577–591. doi: 10.1002/jbm.820130405. [DOI] [PubMed] [Google Scholar]
  30. Kenny D. A., Berger K., Walker M. W., Robel S. B., Boguslavsky L., Ray L. I., Lischko M. M., Sauvage L. R. Experimental comparison of the thrombogenicity of fibrin and PTFE flow surfaces. Ann Surg. 1980 Mar;191(3):355–361. doi: 10.1097/00000658-198003000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Keogh J. R., Velander F. F., Eaton J. W. Albumin-binding surfaces for implantable devices. J Biomed Mater Res. 1992 Apr;26(4):441–456. doi: 10.1002/jbm.820260403. [DOI] [PubMed] [Google Scholar]
  32. Kim S. W., Wisniewski S., Lee E. S., Winn M. L. Role of protein and fatty acid adsorption on platelet adhesion and aggregation at the blood-polymer interface. J Biomed Mater Res. 1977 Jan;11(1):23–31. doi: 10.1002/jbm.820110104. [DOI] [PubMed] [Google Scholar]
  33. Kossovsky N., Heggers J. P., Parsons R. W., Robson M. C. Analysis of the surface morphology of recovered silicone mammary prostheses. Plast Reconstr Surg. 1983 Jun;71(6):795–804. doi: 10.1097/00006534-198306000-00008. [DOI] [PubMed] [Google Scholar]
  34. Kossovsky N., Millett D., Juma S., Little N., Briggs P. C., Raz S., Berg E. In vivo characterization of the inflammatory properties of poly(tetrafluoroethylene) particulates. J Biomed Mater Res. 1991 Oct;25(10):1287–1301. doi: 10.1002/jbm.820251009. [DOI] [PubMed] [Google Scholar]
  35. Kottke-Marchant K., Anderson J. M., Umemura Y., Marchant R. E. Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials. 1989 Apr;10(3):147–155. doi: 10.1016/0142-9612(89)90017-3. [DOI] [PubMed] [Google Scholar]
  36. Kuwahara T., Markert M., Wauters J. P. Protein adsorption on dialyzer membranes influences their biocompatibility properties. Contrib Nephrol. 1989;74:52–57. doi: 10.1159/000417470. [DOI] [PubMed] [Google Scholar]
  37. Kvarstein B. Effects of proteins and inorganic ions on the adhesiveness of human leucocytes to glass beads. Scand J Clin Lab Invest. 1969 Aug;24(1):41–48. doi: 10.3109/00365516909080130. [DOI] [PubMed] [Google Scholar]
  38. Lilla J. A., Vistnes L. M. Long-term study of reactions to various silicone breast implants in rabbits. Plast Reconstr Surg. 1976 May;57(5):637–649. doi: 10.1097/00006534-197605000-00012. [DOI] [PubMed] [Google Scholar]
  39. Marchant R. E., Anderson J. M., Dillingham E. O. In vivo biocompatibility studies. VII. Inflammatory response to polyethylene and to a cytotoxic polyvinylchloride. J Biomed Mater Res. 1986 Jan;20(1):37–50. doi: 10.1002/jbm.820200105. [DOI] [PubMed] [Google Scholar]
  40. Marchant R. E., Anderson J. M., Phua K., Hiltner A. In vivo biocompatibility studies. II. Biomer: preliminary cell adhesion and surface characterization studies. J Biomed Mater Res. 1984 Mar;18(3):309–315. doi: 10.1002/jbm.820180307. [DOI] [PubMed] [Google Scholar]
  41. Marchant R. E., Miller K. M., Anderson J. M. In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer. J Biomed Mater Res. 1984 Nov-Dec;18(9):1169–1190. doi: 10.1002/jbm.820180917. [DOI] [PubMed] [Google Scholar]
  42. Marchant R., Hiltner A., Hamlin C., Rabinovitch A., Slobodkin R., Anderson J. M. In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel. J Biomed Mater Res. 1983 Mar;17(2):301–325. doi: 10.1002/jbm.820170209. [DOI] [PubMed] [Google Scholar]
  43. McKenzie R., Pepper D. S., Kay A. B. The generation of chemotactic activity for human leukocytes by the action of plasmin on human fibrinogen. Thromb Res. 1975 Jan;6(1):1–8. doi: 10.1016/0049-3848(75)90145-0. [DOI] [PubMed] [Google Scholar]
  44. McRitchie D. I., Girotti M. J., Glynn M. F., Goldberg J. M., Rotstein O. D. Effect of systemic fibrinogen depletion on intraabdominal abscess formation. J Lab Clin Med. 1991 Jul;118(1):48–55. [PubMed] [Google Scholar]
  45. Merhi Y., Roy R., Guidoin R., Hebert J., Mourad W., Benslimane S. Cellular reactions to polyester arterial prostheses impregnated with cross-linked albumin: in vivo studies in mice. Biomaterials. 1989 Jan;10(1):56–58. doi: 10.1016/0142-9612(89)90010-0. [DOI] [PubMed] [Google Scholar]
  46. Nelson G. D. Complications from the treatment of fibrous capsular contracture of the breast. Plast Reconstr Surg. 1981 Dec;68(6):969–970. doi: 10.1097/00006534-198112000-00027. [DOI] [PubMed] [Google Scholar]
  47. Pankowsky D. A., Ziats N. P., Topham N. S., Ratnoff O. D., Anderson J. M. Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. J Vasc Surg. 1990 Apr;11(4):599–606. [PubMed] [Google Scholar]
  48. Picha G. J., Goldstein J. A., Stohr E. Natural-Y Même polyurethane versus smooth silicone: analysis of the soft-tissue interaction from 3 days to 1 year in the rat animal model. Plast Reconstr Surg. 1990 Jun;85(6):903–916. doi: 10.1097/00006534-199006000-00011. [DOI] [PubMed] [Google Scholar]
  49. Pollak V. E., Glueck H. I., Weiss M. A., Lebron-Berges A., Miller M. A. Defibrination with ancrod in glomerulonephritis: effects on clinical and histologic findings and on blood coagulation. Am J Nephrol. 1982;2(4):195–207. doi: 10.1159/000166646. [DOI] [PubMed] [Google Scholar]
  50. REID H. A., CHAN K. E., THEAN P. C. Prolonged coagulation defect (defibrination syndrome) in Malayan viper bite. Lancet. 1963 Mar 23;1(7282):621–626. doi: 10.1016/s0140-6736(63)91269-8. [DOI] [PubMed] [Google Scholar]
  51. Richardson D. L., Pepper D. S., Kay A. B. Chemotaxis for human monocytes by fibrinogen-derived peptides. Br J Haematol. 1976 Apr;32(4):507–513. doi: 10.1111/j.1365-2141.1976.tb00953.x. [DOI] [PubMed] [Google Scholar]
  52. Rowland F. N., Donovan M. J., Gillies C., O'Rourke J., Kreutzer D. L. Fibrin: mediator of in vivo and in vitro injury and inflammation. Curr Eye Res. 1985 May;4(5):537–553. doi: 10.3109/02713688508999985. [DOI] [PubMed] [Google Scholar]
  53. Senior R. M., Skogen W. F., Griffin G. L., Wilner G. D. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest. 1986 Mar;77(3):1014–1019. doi: 10.1172/JCI112353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Shainoff J. R., Stearns D. J., DiBello P. M., Hishikawa-Itoh Y. Characterization of a mode of specific binding of fibrin monomer through its amino-terminal domain by macrophages and macrophage cell-lines. Thromb Haemost. 1990 Apr 12;63(2):193–203. [PubMed] [Google Scholar]
  55. Sherman L. A., Lee J. Specific binding of soluble fibrin to macrophages. J Exp Med. 1977 Jan 1;145(1):76–85. doi: 10.1084/jem.145.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shinoda B. A., Mason R. G. Reaction of blood with artificial surfaces of hemodialyzers. Studies of human blood with platelet defects or coagulation factor deficiencies. Biomater Med Devices Artif Organs. 1978;6(4):305–329. doi: 10.3109/10731197809119791. [DOI] [PubMed] [Google Scholar]
  57. Silberman S., Bernik M. B., Potter E. V., Kwaan H. C. Effects of Ancrod (Arvin) in mice: studies of plasma fibrinogen and fibrinolytic activity. Br J Haematol. 1973 Jan;24(1):101–113. doi: 10.1111/j.1365-2141.1973.tb05731.x. [DOI] [PubMed] [Google Scholar]
  58. Silver R. M., Sahn E. E., Allen J. A., Sahn S., Greene W., Maize J. C., Garen P. D. Demonstration of silicon in sites of connective-tissue disease in patients with silicone-gel breast implants. Arch Dermatol. 1993 Jan;129(1):63–68. [PubMed] [Google Scholar]
  59. Skogen W. F., Senior R. M., Griffin G. L., Wilner G. D. Fibrinogen-derived peptide B beta 1-42 is a multidomained neutrophil chemoattractant. Blood. 1988 May;71(5):1475–1479. [PubMed] [Google Scholar]
  60. Smahel J. Foreign material in the capsules around breast prostheses and the cellular reaction to it. Br J Plast Surg. 1979 Jan;32(1):35–42. doi: 10.1016/0007-1226(79)90058-4. [DOI] [PubMed] [Google Scholar]
  61. Smahel J. Histology of the capsules causing constrictive fibrosis around breast implants. Br J Plast Surg. 1977 Oct;30(4):324–329. doi: 10.1016/0007-1226(77)90132-1. [DOI] [PubMed] [Google Scholar]
  62. Stark G. B., Göbel M., Jaeger K. Intraluminal cyclosporine A reduces capsular thickness around silicone implants in rats. Ann Plast Surg. 1990 Feb;24(2):156–161. doi: 10.1097/00000637-199002000-00009. [DOI] [PubMed] [Google Scholar]
  63. Stecher V. J., Sorkin E. The chemotactic activity of fibrin lysis products. Int Arch Allergy Appl Immunol. 1972;43(6):879–886. doi: 10.1159/000230905. [DOI] [PubMed] [Google Scholar]
  64. Sueishi K., Nanno S., Tanaka K. Permeability enhancing and chemotactic activities of lower molecular weight degradation products of human fibrinogen. Thromb Haemost. 1981 Feb 23;45(1):90–94. [PubMed] [Google Scholar]
  65. Sutherland K., Mahoney J. R., 2nd, Coury A. J., Eaton J. W. Degradation of biomaterials by phagocyte-derived oxidants. J Clin Invest. 1993 Nov;92(5):2360–2367. doi: 10.1172/JCI116841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tang L., Lucas A. H., Eaton J. W. Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin G. J Lab Clin Med. 1993 Sep;122(3):292–300. [PubMed] [Google Scholar]
  67. Thomas E. L., Fishman M. Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem. 1986 Jul 25;261(21):9694–9702. [PubMed] [Google Scholar]
  68. Torres J. L., Rush R. S., Main A. R. Physical and chemical characterization of a horse serum carboxylesterase. Arch Biochem Biophys. 1988 Nov 15;267(1):271–279. doi: 10.1016/0003-9861(88)90032-x. [DOI] [PubMed] [Google Scholar]
  69. Trezzini C., Schüepp B., Maly F. E., Jungi T. W. Evidence that exposure to fibrinogen or to antibodies directed against Mac-1 (CD11b/CD18; CR3) modulates human monocyte effector functions. Br J Haematol. 1991 Jan;77(1):16–24. doi: 10.1111/j.1365-2141.1991.tb07942.x. [DOI] [PubMed] [Google Scholar]
  70. Uenoyama K., Kanagawa R., Tamura M., Matoba M., Enomoto Y., Ohmi S. Experimental intraocular lens implantation in the rabbit eye and in the mouse peritoneal space. Part I: Cellular components observed on the implanted lens surface. J Cataract Refract Surg. 1988 Mar;14(2):187–191. doi: 10.1016/s0886-3350(88)80094-4. [DOI] [PubMed] [Google Scholar]
  71. Vistnes L. M., Ksander G. A., Kosek J. Study of encapsulation of silicone rubber implants in animals. A foreign-body reaction. Plast Reconstr Surg. 1978 Oct;62(4):580–588. doi: 10.1097/00006534-197810000-00015. [DOI] [PubMed] [Google Scholar]
  72. Ward R., Minns R. J. Woven carbon-fibre patch versus Dacron mesh in the repair of experimental defects in the lumbar fascia of rabbits. Biomaterials. 1989 Aug;10(6):425–428. doi: 10.1016/0142-9612(89)90135-x. [DOI] [PubMed] [Google Scholar]
  73. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
  74. Zhao Q., Agger M. P., Fitzpatrick M., Anderson J. M., Hiltner A., Stokes K., Urbanski P. Cellular interactions with biomaterials: in vivo cracking of pre-stressed Pellethane 2363-80A. J Biomed Mater Res. 1990 May;24(5):621–637. doi: 10.1002/jbm.820240508. [DOI] [PubMed] [Google Scholar]
  75. Zhao Q., Topham N., Anderson J. M., Hiltner A., Lodoen G., Payet C. R. Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res. 1991 Feb;25(2):177–183. doi: 10.1002/jbm.820250205. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES