Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Jan 1;179(1):31–42. doi: 10.1084/jem.179.1.31

Interleukin 7 promotes long-term in vitro growth of antitumor cytotoxic T lymphocytes with immunotherapeutic efficacy in vivo

PMCID: PMC2191325  PMID: 8270874

Abstract

A major obstacle to the effective use of adoptive immunotherapeutic treatment of cancer is the difficulty of obtaining tumor-reactive lymphocytes in either sufficient numbers or with appropriate in vivo function to make such an approach feasible. Previous studies have shown that antitumor cytotoxic T lymphocytes (CTL) with in vivo efficacy can be generated in vitro from lymphoid cells obtained from lymph nodes that drain the anatomical site of a tumor. Results presented here demonstrate that inclusion of interleukin 7 (IL-7) into the medium in which such CTL are cultured can support their growth in vitro for prolonged periods of time in the absence of repeated stimulation with either tumor stimulator cells or tumor antigen. More importantly, antitumor CTL propagated in medium containing IL-7 have retained both their antigenic specificity and their ability to reject tumors in vivo subsequent to intravenous injection. Parallel cultures of antitumor CTL similarly cultured in medium containing only IL-2 could only be maintained for 5-6 wk, after which the number and proportion of viable cells that were recoverable from such cultures progressively decreased. Phenotypic analysis of CTL maintained after extended culture (i.e., 22 mo) in medium containing IL-7 demonstrated them to be CD3+4-8+ T cells. These cells were also found to express lymphocyte function associated 1, intercellular adhesion molecule 1, and Mel-14 cell interaction molecules. The data also demonstrate that these CTL do not require the presence of antigen-presenting cell populations to mount a proliferative response to tumor stimulator cells. Cells in these cultures were also demonstrated to produce IL-2 after stimulation with irradiated tumor cells, thereby indicating that these CTL have become independent of the requirement for CD4+ helper cells to survive and function either in vitro or in vivo. Collectively, the findings that IL- 7 can beneficially augment the generation, and propagate the long-term growth, of antitumor CTL from lymph nodes draining a tumor site may have profound implications for promoting the immunotherapeutic treatment of cancer in humans.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson M. R., Sassenfeld H. M., Widmer M. B. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. J Exp Med. 1990 Aug 1;172(2):577–587. doi: 10.1084/jem.172.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brent L., Medawar P. Quantitative studies on tissue transplantation immunity. 8. The effects of irradiation. Proc R Soc Lond B Biol Sci. 1966 Oct 11;165(1001):413–423. doi: 10.1098/rspb.1966.0074. [DOI] [PubMed] [Google Scholar]
  3. Brunner K. T., MacDonald H. R., Cerottini J. C. Quantitation and clonal isolation of cytolytic T lymphocyte precursors selectively infiltrating murine sarcoma virus-induced tumors. J Exp Med. 1981 Aug 1;154(2):362–373. doi: 10.1084/jem.154.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapdelaine J. M., Plata F., Lilly F. Tumors induced by murine sarcoma virus contain precursor cells capable of generating tumor-specific cytolytic T lymphocytes. J Exp Med. 1979 Jun 1;149(6):1531–1536. doi: 10.1084/jem.149.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheever M. A., Greenberg P. D., Fefer A. Specific adoptive therapy of established leukemia with syngeneic lymphocytes sequentially immunized in vivo and in vitro and nonspecifically expanded by culture with Interleukin 2. J Immunol. 1981 Apr;126(4):1318–1322. [PubMed] [Google Scholar]
  6. Cheever M. A., Greenberg P. D., Fefer A. Specificity of adoptive chemoimmunotherapy of established syngeneic tumors. J Immunol. 1980 Aug;125(2):711–714. [PubMed] [Google Scholar]
  7. Cheever M. A., Greenberg P. D., Fefer A. Tumor neutralization, immunotherapy, and chemoimmunotherapy of a Friend leukemia with cells secondarily sensitized in vitro: II. Comparison of cells cultured with and without tumor to noncultured immune cells. J Immunol. 1978 Dec;121(6):2220–2227. [PubMed] [Google Scholar]
  8. Cheever M. A., Greenberg P. D., Irle C., Thompson J. A., Urdal D. L., Mochizuki D. Y., Henney C. S., Gillis S. Interleukin 2 administered in vivo induces the growth of cultured T cells in vivo. J Immunol. 1984 May;132(5):2259–2265. [PubMed] [Google Scholar]
  9. Cheever M. A., Kempf R. A., Fefer A. Tumor neutralization, immunotherapy, and chemoimmmunotherapy of a Friend leukemia with cells secondarily sensitized in vitro. J Immunol. 1977 Aug;119(2):714–718. [PubMed] [Google Scholar]
  10. Cheever M. A., Thompson D. B., Klarnet J. P., Greenberg P. D. Antigen-driven long term-cultured T cells proliferate in vivo, distribute widely, mediate specific tumor therapy, and persist long-term as functional memory T cells. J Exp Med. 1986 May 1;163(5):1100–1112. doi: 10.1084/jem.163.5.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chou T., Chang A. E., Shu S. Y. Generation of therapeutic T lymphocytes from tumor-bearing mice by in vitro sensitization. Culture requirements and characterization of immunologic specificity. J Immunol. 1988 Apr 1;140(7):2453–2461. [PubMed] [Google Scholar]
  12. Crossland K. D., Lee V. K., Chen W., Riddell S. R., Greenberg P. D., Cheever M. A. T cells from tumor-immune mice nonspecifically expanded in vitro with anti-CD3 plus IL-2 retain specific function in vitro and can eradicate disseminated leukemia in vivo. J Immunol. 1991 Jun 15;146(12):4414–4420. [PubMed] [Google Scholar]
  13. Daynes R. A., Fernandez P. A., Woodward J. G. Cell-mediated immune response to syngeneic ultraviolet-induced tumors. II. The properties and antigenic specificities of cytotoxic T lymphocytes generated in vitro following removal from syngeneic tumor-immunized mice. Cell Immunol. 1979 Jul;45(2):398–414. doi: 10.1016/0008-8749(79)90400-3. [DOI] [PubMed] [Google Scholar]
  14. Fernandez-Cruz E., Halliburton B., Feldman J. D. In vivo elimination by specific effector cells of an established syngeneic rat moloney virus-induced sarcoma. J Immunol. 1979 Oct;123(4):1772–1777. [PubMed] [Google Scholar]
  15. Gillespie G. Y., Hansen C. B., Hoskins R. G., Russell S. W. Inflammatory cells in solid murine neoplasms. IV. Cytolytic T lymphocytes isolated from regressing or progressing Moloney sarcomas. J Immunol. 1977 Aug;119(2):564–570. [PubMed] [Google Scholar]
  16. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  17. Greenberg P. D. Therapy of murine leukemia with cyclophosphamide and immune Lyt-2+ cells: cytolytic T cells can mediate eradication of disseminated leukemia. J Immunol. 1986 Mar 1;136(5):1917–1922. [PubMed] [Google Scholar]
  18. Itoh K., Platsoucas C. D., Balch C. M. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas. Activation by interleukin 2 and autologous tumor cells, and involvement of the T cell receptor. J Exp Med. 1988 Oct 1;168(4):1419–1441. doi: 10.1084/jem.168.4.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kawakami Y., Rosenberg S. A., Lotze M. T. Interleukin 4 promotes the growth of tumor-infiltrating lymphocytes cytotoxic for human autologous melanoma. J Exp Med. 1988 Dec 1;168(6):2183–2191. doi: 10.1084/jem.168.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klarnet J. P., Matis L. A., Kern D. E., Mizuno M. T., Peace D. J., Thompson J. A., Greenberg P. D., Cheever M. A. Antigen-driven T cell clones can proliferate in vivo, eradicate disseminated leukemia, and provide specific immunologic memory. J Immunol. 1987 Jun 1;138(11):4012–4017. [PubMed] [Google Scholar]
  21. Lotze M. T., Chang A. E., Seipp C. A., Simpson C., Vetto J. T., Rosenberg S. A. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA. 1986 Dec 12;256(22):3117–3124. [PubMed] [Google Scholar]
  22. Lynch D. H., Daynes R. A., Hodes R. J. Cell-mediated immune responses to syngeneic tumors. I. Identification of two distinct CTL effector pathways which differ in antigen specificity, genetic regulation, and cell surface phenotype. J Immunol. 1986 Feb 15;136(4):1521–1527. [PubMed] [Google Scholar]
  23. Lynch D. H., Miller R. E. Immunotherapeutic elimination of syngeneic tumors in vivo by cytotoxic T lymphocytes generated in vitro from lymphocytes from the draining lymph nodes of tumor-bearing mice. Eur J Immunol. 1991 Jun;21(6):1403–1410. doi: 10.1002/eji.1830210612. [DOI] [PubMed] [Google Scholar]
  24. Lynch D. H., Miller R. E. Induction of murine lymphokine-activated killer cells by recombinant IL-7. J Immunol. 1990 Sep 15;145(6):1983–1990. [PubMed] [Google Scholar]
  25. Lynch D. H., Namen A. E., Miller R. E. In vivo evaluation of the effects of interleukins 2, 4 and 7 on enhancing the immunotherapeutic efficacy of anti-tumor cytotoxic T lymphocytes. Eur J Immunol. 1991 Dec;21(12):2977–2985. doi: 10.1002/eji.1830211212. [DOI] [PubMed] [Google Scholar]
  26. Matis L. A., Ruscetti S. K., Longo D. L., Jacobson S., Brown E. J., Zinn S., Kruisbeek A. M. Distinct proliferative T cell clonotypes are generated in response to a murine retrovirus-induced syngeneic T cell leukemia: viral gp70 antigen-specific MT4+ clones and Lyt-2+ cytolytic clones which recognize a tumor-specific cell surface antigen. J Immunol. 1985 Jul;135(1):703–713. [PubMed] [Google Scholar]
  27. Matis L. A., Shu S., Groves E. S., Zinn S., Chou T., Kruisbeek A. M., Rosenstein M., Rosenberg S. A. Adoptive immunotherapy of a syngeneic murine leukemia with a tumor-specific cytotoxic T cell clone and recombinant human interleukin 2: correlation with clonal IL 2 receptor expression. J Immunol. 1986 May 1;136(9):3496–3501. [PubMed] [Google Scholar]
  28. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  29. Namen A. E., Lupton S., Hjerrild K., Wignall J., Mochizuki D. Y., Schmierer A., Mosley B., March C. J., Urdal D., Gillis S. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988 Jun 9;333(6173):571–573. doi: 10.1038/333571a0. [DOI] [PubMed] [Google Scholar]
  30. Namen A. E., Schmierer A. E., March C. J., Overell R. W., Park L. S., Urdal D. L., Mochizuki D. Y. B cell precursor growth-promoting activity. Purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med. 1988 Mar 1;167(3):988–1002. doi: 10.1084/jem.167.3.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ohara J., Paul W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature. 1985 May 23;315(6017):333–336. doi: 10.1038/315333a0. [DOI] [PubMed] [Google Scholar]
  32. Park L. S., Friend D. J., Schmierer A. E., Dower S. K., Namen A. E. Murine interleukin 7 (IL-7) receptor. Characterization on an IL-7-dependent cell line. J Exp Med. 1990 Apr 1;171(4):1073–1089. doi: 10.1084/jem.171.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosenberg S. A., Spiess P., Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986 Sep 19;233(4770):1318–1321. doi: 10.1126/science.3489291. [DOI] [PubMed] [Google Scholar]
  34. Sakai K., Chang A. E., Shu S. Effector phenotype and immunologic specificity of T-cell-mediated adoptive therapy for a murine tumor that lacks intrinsic immunogenicity. Cell Immunol. 1990 Aug;129(1):241–255. doi: 10.1016/0008-8749(90)90201-2. [DOI] [PubMed] [Google Scholar]
  35. Shu S. Y., Chou T., Rosenberg S. A. Generation from tumor-bearing mice of lymphocytes with in vivo therapeutic efficacy. J Immunol. 1987 Jul 1;139(1):295–304. [PubMed] [Google Scholar]
  36. Shu S. Y., Rosenberg S. A. Adoptive immunotherapy of newly induced murine sarcomas. Cancer Res. 1985 Apr;45(4):1657–1662. [PubMed] [Google Scholar]
  37. Shu S., Chou T., Rosenberg S. A. In vitro sensitization and expansion with viable tumor cells and interleukin 2 in the generation of specific therapeutic effector cells. J Immunol. 1986 May 15;136(10):3891–3898. [PubMed] [Google Scholar]
  38. Stern A. S., Pan Y. C., Urdal D. L., Mochizuki D. Y., DeChiara S., Blacher R., Wideman J., Gillis S. Purification to homogeneity and partial characterization of interleukin 2 from a human T-cell leukemia. Proc Natl Acad Sci U S A. 1984 Feb;81(3):871–875. doi: 10.1073/pnas.81.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Topalian S. L., Muul L. M., Solomon D., Rosenberg S. A. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987 Aug 24;102(1):127–141. doi: 10.1016/s0022-1759(87)80018-2. [DOI] [PubMed] [Google Scholar]
  40. Topalian S. L., Solomon D., Rosenberg S. A. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol. 1989 May 15;142(10):3714–3725. [PubMed] [Google Scholar]
  41. Urdal D. L., Mochizuki D., Conlon P. J., March C. J., Remerowski M. L., Eisenman J., Ramthun C., Gillis S. Lymphokine purification by reversed-phase high-performance liquid chromatography. J Chromatogr. 1984 Jul 27;296:171–179. doi: 10.1016/s0021-9673(01)96410-6. [DOI] [PubMed] [Google Scholar]
  42. Wang Y. L., Si L. S., Kanbour A., Herberman R. B., Whiteside T. L. Lymphocytes infiltrating human ovarian tumors: synergy between tumor necrosis factor alpha and interleukin 2 in the generation of CD8+ effectors from tumor-infiltrating lymphocytes. Cancer Res. 1989 Nov 1;49(21):5979–5985. [PubMed] [Google Scholar]
  43. Yoshizawa H., Chang A. E., Shu S. Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol. 1991 Jul 15;147(2):729–737. [PubMed] [Google Scholar]
  44. Yron I., Wood T. A., Jr, Spiess P. J., Rosenberg S. A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol. 1980 Jul;125(1):238–245. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES