Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Jan 1;179(1):213–219. doi: 10.1084/jem.179.1.213

Conformational differences in major histocompatibility complex-peptide complexes can result in alloreactivity

PMCID: PMC2191347  PMID: 8270866

Abstract

Mutations within the class I major histocompatibility complex (MHC) molecule that affect a peptide binding can result in strong allogeneic responses. It is believed this reflects, in part, binding of a different set of endogenous peptides by each MHC molecule. We have examined the representation of allopeptides recognized by Kb-specific cytotoxic T lymphocytes (CTL) clones among targets that express either the Kb or the Kbm8 mutant. These class I molecules mutationally differ by several residues at the base of the peptide binding groove resulting in lack of recognition of bm8 targets by most Kb-specific CTL, and in strong mutual alloreactivity. Since these differences involve pockets in the base of the peptide binding groove that are presumed to contribute to the affinity of peptide binding, and there is evidence for differences in peptide binding by the mutant and wild type molecule, it was considered most likely that alloreactivity was due to binding of different sets of peptides by each of these molecules. Surprisingly, the allopeptides recognized by Kb-specific clones from a variety of responders, including bm8, are often found associated with both the wild type and mutant class I molecules. Although for some allopeptides the amount of peptide normally found associated with bm8 is less than that associated with Kb, reactivity could not be restored by increasing the amount of the relevant peptide. Thus, the basis for much of the alloreactivity observed in this particular mutant and wild type combination is not the presence or absence of the relevant allopeptide but rather the different conformation adapted by the peptide-MHC complex. These results allow us to conclude that strong alloreactive responses can result from T cell recognition of conformational differences between the stimulation and responder MHC molecules.

Full Text

The Full Text of this article is available as a PDF (620.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajitkumar P., Geier S. S., Kesari K. V., Borriello F., Nakagawa M., Bluestone J. A., Saper M. A., Wiley D. C., Nathenson S. G. Evidence that multiple residues on both the alpha-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. Cell. 1988 Jul 1;54(1):47–56. doi: 10.1016/0092-8674(88)90178-x. [DOI] [PubMed] [Google Scholar]
  2. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  3. Cerundolo V., Alexander J., Anderson K., Lamb C., Cresswell P., McMichael A., Gotch F., Townsend A. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature. 1990 May 31;345(6274):449–452. doi: 10.1038/345449a0. [DOI] [PubMed] [Google Scholar]
  4. Chen W., McCluskey J., Rodda S., Carbone F. R. Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition. J Exp Med. 1993 Mar 1;177(3):869–873. doi: 10.1084/jem.177.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis M. M., Bjorkman P. J. T-cell antigen receptor genes and T-cell recognition. Nature. 1988 Aug 4;334(6181):395–402. doi: 10.1038/334395a0. [DOI] [PubMed] [Google Scholar]
  6. Falk K., Rötzschke O., Deres K., Metzger J., Jung G., Rammensee H. G. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med. 1991 Aug 1;174(2):425–434. doi: 10.1084/jem.174.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  8. Fremont D. H., Matsumura M., Stura E. A., Peterson P. A., Wilson I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science. 1992 Aug 14;257(5072):919–927. doi: 10.1126/science.1323877. [DOI] [PubMed] [Google Scholar]
  9. Garrett T. P., Saper M. A., Bjorkman P. J., Strominger J. L., Wiley D. C. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature. 1989 Dec 7;342(6250):692–696. doi: 10.1038/342692a0. [DOI] [PubMed] [Google Scholar]
  10. Grandea A. G., 3rd, Bevan M. J. Single-residue changes in class I major histocompatibility complex molecules stimulate responses to self peptides. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2794–2798. doi: 10.1073/pnas.89.7.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guimezanes A., Schumacher T. N., Ploegh H. L., Schmitt-Verhulst A. M. A viral peptide can mimic an endogenous peptide for allorecognition of a major histocompatibility complex class I product. Eur J Immunol. 1992 Jun;22(6):1651–1654. doi: 10.1002/eji.1830220647. [DOI] [PubMed] [Google Scholar]
  12. Heath W. R., Kane K. P., Mescher M. F., Sherman L. A. Alloreactive T cells discriminate among a diverse set of endogenous peptides. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5101–5105. doi: 10.1073/pnas.88.12.5101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hosken N. A., Bevan M. J. An endogenous antigenic peptide bypasses the class I antigen presentation defect in RMA-S. J Exp Med. 1992 Mar 1;175(3):719–729. doi: 10.1084/jem.175.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hosken N. A., Bevan M. J. Defective presentation of endogenous antigen by a cell line expressing class I molecules. Science. 1990 Apr 20;248(4953):367–370. doi: 10.1126/science.2326647. [DOI] [PubMed] [Google Scholar]
  15. Hunt D. F., Henderson R. A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A. L., Appella E., Engelhard V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992 Mar 6;255(5049):1261–1263. doi: 10.1126/science.1546328. [DOI] [PubMed] [Google Scholar]
  16. Hunt H. D., Pullen J. K., Dick R. F., Bluestone J. A., Pease L. R. Structural basis of Kbm8 alloreactivity. Amino acid substitutions on the beta-pleated floor of the antigen recognition site. J Immunol. 1990 Sep 1;145(5):1456–1462. [PubMed] [Google Scholar]
  17. Irwin M. J., Heath W. R., Sherman L. A. Species-restricted interactions between CD8 and the alpha 3 domain of class I influence the magnitude of the xenogeneic response. J Exp Med. 1989 Oct 1;170(4):1091–1101. doi: 10.1084/jem.170.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
  19. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature. 1991 Sep 26;353(6342):321–325. doi: 10.1038/353321a0. [DOI] [PubMed] [Google Scholar]
  20. Matsumura M., Fremont D. H., Peterson P. A., Wilson I. A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science. 1992 Aug 14;257(5072):927–934. doi: 10.1126/science.1323878. [DOI] [PubMed] [Google Scholar]
  21. Matzinger P., Bevan M. J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol. 1977 Mar 1;29(1):1–5. doi: 10.1016/0008-8749(77)90269-6. [DOI] [PubMed] [Google Scholar]
  22. Melief C. J., de Waal L. P., van der Meulen M. Y., Melvold R. W., Kohn H. I. Fine specificity of alloimmune cytotoxic T lymphocytes directed against H-2K. A study with Kb mutants. J Exp Med. 1980 May 1;151(5):993–1013. doi: 10.1084/jem.151.5.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rammensee H. G., Falk K., Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol. 1993;11:213–244. doi: 10.1146/annurev.iy.11.040193.001241. [DOI] [PubMed] [Google Scholar]
  24. Rohren E. M., Pease L. R., Ploegh H. L., Schumacher T. N. Polymorphisms in pockets of major histocompatibility complex class I molecules influence peptide preference. J Exp Med. 1993 Jun 1;177(6):1713–1721. doi: 10.1084/jem.177.6.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rötzschke O., Falk K., Faath S., Rammensee H. G. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991 Nov 1;174(5):1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sherman L. A., Chattopadhyay S., Biggs J. A., Dick R. F., 2nd, Bluestone J. A. Alloantibodies can discriminate class I major histocompatibility complex molecules associated with various endogenous peptides. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6949–6951. doi: 10.1073/pnas.90.15.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sherman L. A., Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol. 1993;11:385–402. doi: 10.1146/annurev.iy.11.040193.002125. [DOI] [PubMed] [Google Scholar]
  28. Sherman L. A. Dissection of the B10.D2 anti-H-2Kb cytolytic T lymphocyte receptor repertoire. J Exp Med. 1980 Jun 1;151(6):1386–1397. doi: 10.1084/jem.151.6.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sherman L. A. Recognition of conformational determinants on H-2 by cytolytic T lymphocytes. Nature. 1982 Jun 10;297(5866):511–513. doi: 10.1038/297511a0. [DOI] [PubMed] [Google Scholar]
  30. Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
  31. Van Bleek G. M., Nathenson S. G. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature. 1990 Nov 15;348(6298):213–216. doi: 10.1038/348213a0. [DOI] [PubMed] [Google Scholar]
  32. Wettstein P. J., van Bleek G. M., Nathenson S. G. Differential binding of a minor histocompatibility antigen peptide to H-2 class I molecules correlates with immune responsiveness. J Immunol. 1993 Apr 1;150(7):2753–2760. [PubMed] [Google Scholar]
  33. Zhang W., Young A. C., Imarai M., Nathenson S. G., Sacchettini J. C. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8403–8407. doi: 10.1073/pnas.89.17.8403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Bleek G. M., Nathenson S. G. The structure of the antigen-binding groove of major histocompatibility complex class I molecules determines specific selection of self-peptides. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11032–11036. doi: 10.1073/pnas.88.24.11032. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES