Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Feb 1;179(2):751–756. doi: 10.1084/jem.179.2.751

Monocyte chemotactic protein 3 is a most effective basophil- and eosinophil-activating chemokine

PMCID: PMC2191381  PMID: 7507512

Abstract

CC chemokines constitute a novel class of cytokines that attract and activate monocytes and lymphocytes, as well as basophil and eosinophil leukocytes, with distinct target cell profiles, and are believed to be involved in the regulation of different types of inflammation. The action of the recently identified monocyte chemotactic protein 3 (MCP- 3) on human basophil and eosinophil function was studied and compared with that of other CC chemokines. In basophils, MCP-3, MCP-1, RANTES, and macrophage inflammatory protein (MIP)-1 alpha all induced cytosolic- free calcium concentration ([Ca2+]i) changes and, with different efficacies, chemotaxis (RANTES = MCP-3 >> MCP-1 > MIP-1 alpha), histamine release (MCP-1 = MCP-3 >> RANTES > MIP-1 alpha), and leukotriene C4 formation, after IL-3 pretreatment (MCP-1 = MCP-3 >> RANTES > MIP-1 alpha). Thus, MCP-3 was as effective as MCP-1 as an inducer of mediator release, and as effective as RANTES as a stimulus of basophil migration. In contrast to MCP-1, MCP-3 was also a stimulus for eosinophils, and induced [Ca2+]i changes and chemotaxis as effectively as RANTES, which is the most potent chemotactic cytokine for these cells. Desensitization of the transient changes in [Ca2+]i was used to assess receptor usage. In basophils, stimulation with MCP-3 prevented responsiveness to MCP-1 and RANTES, but not to MIP-1 alpha. No single CC chemokine (except for MCP-3 itself) affected the response to MCP-3, however, which was prevented only when the cells were prestimulated with both MCP-1 and RANTES. In eosinophils, by contrast, cross-desensitization between RANTES and MCP-3 was obtained. RANTES and to a lesser extent MCP-3 also desensitized eosinophils toward MIP-1 alpha. The desensitization data suggest the existence of three chemokine receptors: (a) a MCP-1 receptor expressed on basophils but not eosinophils that is activated by MCP-1 and MCP-3; (b) a RANTES receptor in basophils and eosinophils that is activated by RANTES and MCP-3; and (c) a MIP-1 alpha receptor that is activated by MIP-1 alpha, RANTES and, more weakly, by MCP-3. This study shows that MCP-3 combines the properties of RANTES, a powerful chemoattractant, and MCP-1, a highly effective stimulus of mediator release, and thus has a particularly broad range of activities toward both human basophil and eosinophil leukocytes.

Full Text

The Full Text of this article is available as a PDF (622.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam R., Forsythe P. A., Stafford S., Lett-Brown M. A., Grant J. A. Macrophage inflammatory protein-1 alpha activates basophils and mast cells. J Exp Med. 1992 Sep 1;176(3):781–786. doi: 10.1084/jem.176.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alam R., Lett-Brown M. A., Forsythe P. A., Anderson-Walters D. J., Kenamore C., Kormos C., Grant J. A. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for basophils. J Clin Invest. 1992 Mar;89(3):723–728. doi: 10.1172/JCI115648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bischoff S. C., Dahinden C. A. Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood. 1992 May 15;79(10):2662–2669. [PubMed] [Google Scholar]
  4. Bischoff S. C., Krieger M., Brunner T., Dahinden C. A. Monocyte chemotactic protein 1 is a potent activator of human basophils. J Exp Med. 1992 May 1;175(5):1271–1275. doi: 10.1084/jem.175.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bischoff S. C., Krieger M., Brunner T., Rot A., von Tscharner V., Baggiolini M., Dahinden C. A. RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol. 1993 Mar;23(3):761–767. doi: 10.1002/eji.1830230329. [DOI] [PubMed] [Google Scholar]
  6. Dahinden C. A., Kurimoto Y., De Weck A. L., Lindley I., Dewald B., Baggiolini M. The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J Exp Med. 1989 Nov 1;170(5):1787–1792. doi: 10.1084/jem.170.5.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Didsbury J. R., Uhing R. J., Tomhave E., Gerard C., Gerard N., Snyderman R. Receptor class desensitization of leukocyte chemoattractant receptors. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11564–11568. doi: 10.1073/pnas.88.24.11564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gao J. L., Kuhns D. B., Tiffany H. L., McDermott D., Li X., Francke U., Murphy P. M. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med. 1993 May 1;177(5):1421–1427. doi: 10.1084/jem.177.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kameyoshi Y., Dörschner A., Mallet A. I., Christophers E., Schröder J. M. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med. 1992 Aug 1;176(2):587–592. doi: 10.1084/jem.176.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krieger M., Brunner T., Bischoff S. C., von Tscharner V., Walz A., Moser B., Baggiolini M., Dahinden C. A. Activation of human basophils through the IL-8 receptor. J Immunol. 1992 Oct 15;149(8):2662–2667. [PubMed] [Google Scholar]
  11. Kulmburg P. A., Huber N. E., Scheer B. J., Wrann M., Baumruker T. Immunoglobulin E plus antigen challenge induces a novel intercrine/chemokine in mouse mast cells. J Exp Med. 1992 Dec 1;176(6):1773–1778. doi: 10.1084/jem.176.6.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuna P., Reddigari S. R., Rucinski D., Oppenheim J. J., Kaplan A. P. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J Exp Med. 1992 Feb 1;175(2):489–493. doi: 10.1084/jem.175.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuna P., Reddigari S. R., Schall T. J., Rucinski D., Viksman M. Y., Kaplan A. P. RANTES, a monocyte and T lymphocyte chemotactic cytokine releases histamine from human basophils. J Immunol. 1992 Jul 15;149(2):636–642. [PubMed] [Google Scholar]
  14. McColl S. R., Hachicha M., Levasseur S., Neote K., Schall T. J. Uncoupling of early signal transduction events from effector function in human peripheral blood neutrophils in response to recombinant macrophage inflammatory proteins-1 alpha and -1 beta. J Immunol. 1993 May 15;150(10):4550–4560. [PubMed] [Google Scholar]
  15. Minty A., Chalon P., Guillemot J. C., Kaghad M., Liauzun P., Magazin M., Miloux B., Minty C., Ramond P., Vita N. Molecular cloning of the MCP-3 chemokine gene and regulation of its expression. Eur Cytokine Netw. 1993 Mar-Apr;4(2):99–110. [PubMed] [Google Scholar]
  16. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993 Feb 12;72(3):415–425. doi: 10.1016/0092-8674(93)90118-a. [DOI] [PubMed] [Google Scholar]
  17. Opdenakker G., Froyen G., Fiten P., Proost P., Van Damme J. Human monocyte chemotactic protein-3 (MCP-3): molecular cloning of the cDNA and comparison with other chemokines. Biochem Biophys Res Commun. 1993 Mar 15;191(2):535–542. doi: 10.1006/bbrc.1993.1251. [DOI] [PubMed] [Google Scholar]
  18. Rot A., Krieger M., Brunner T., Bischoff S. C., Schall T. J., Dahinden C. A. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med. 1992 Dec 1;176(6):1489–1495. doi: 10.1084/jem.176.6.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. White M. V., Yoshimura T., Hook W., Kaliner M. A., Leonard E. J. Neutrophil attractant/activation protein-1 (NAP-1) causes human basophil histamine release. Immunol Lett. 1989 Aug;22(2):151–154. doi: 10.1016/0165-2478(89)90182-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES