Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Mar 1;179(3):831–840. doi: 10.1084/jem.179.3.831

Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor

PMCID: PMC2191416  PMID: 7509362

Abstract

Keratinocyte growth factor (KGF), a recently discovered 18.9 kD member of the fibroblast growth factor family has been shown to selectively induce keratinocyte proliferation and differentiation in tissue culture. To explore its potential stimulating keratinocyte growth and differentiation in vivo, we analyzed for the influence of KGF on epithelial derived elements within a wound created through the cartilage on the rabbit ear. KGF accelerated reepithelialization (p = 0.004) and increased the thickness of the epithelium (p = 0.0005) when 4-40 micrograms/cm2 recombinant KGF was added at the time of wounding. The regenerating epidermis showed normal differentiation as detected by cytokeratin immunostaining. Remarkably, however, KGF stimulated proliferation and differentiation of early progenitor cells within hair follicles and sebaceous glands in the wound bed and adjacent dermis. There was a transient but highly significant increase in specific labeling of cycling cells in both basal and suprabasal layers that extended into the spinous layer of the regenerating epidermis. As an indication of specificity, the inflammatory cells and fibroblasts within the wound were not influenced by KGF. The results indicate that KGF is unique in its ability to accelerate reepithelialization and dermal regeneration by targeting multiple epithelial elements within the skin. These results suggest that KGF may induce specific epithelial progenitor cell lineages within the skin to proliferate and differentiate, and thus may be a critical determinant of regeneration of skin. Furthermore, these findings illustrate the potential capacity of this system to analyze epithelial differentiation programs and disorders of epidermis, dermal glandular elements, and hair follicles.

Full Text

The Full Text of this article is available as a PDF (8.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottaro D. P., Fortney E., Rubin J. S., Aaronson S. A. A keratinocyte growth factor receptor-derived peptide antagonist identifies part of the ligand binding site. J Biol Chem. 1993 May 5;268(13):9180–9183. [PubMed] [Google Scholar]
  2. Bottaro D. P., Rubin J. S., Ron D., Finch P. W., Florio C., Aaronson S. A. Characterization of the receptor for keratinocyte growth factor. Evidence for multiple fibroblast growth factor receptors. J Biol Chem. 1990 Aug 5;265(22):12767–12770. [PubMed] [Google Scholar]
  3. Cotsarelis G., Sun T. T., Lavker R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990 Jun 29;61(7):1329–1337. doi: 10.1016/0092-8674(90)90696-c. [DOI] [PubMed] [Google Scholar]
  4. Dell K. R., Williams L. T. A novel form of fibroblast growth factor receptor 2. Alternative splicing of the third immunoglobulin-like domain confers ligand binding specificity. J Biol Chem. 1992 Oct 15;267(29):21225–21229. [PubMed] [Google Scholar]
  5. Dover R., Watt F. M. Measurement of the rate of epidermal terminal differentiation: expression of involucrin by S-phase keratinocytes in culture and in psoriatic plaques. J Invest Dermatol. 1987 Oct;89(4):349–352. doi: 10.1111/1523-1747.ep12471751. [DOI] [PubMed] [Google Scholar]
  6. Finch P. W., Rubin J. S., Miki T., Ron D., Aaronson S. A. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science. 1989 Aug 18;245(4919):752–755. doi: 10.1126/science.2475908. [DOI] [PubMed] [Google Scholar]
  7. Fuchs E. Epidermal differentiation: the bare essentials. J Cell Biol. 1990 Dec;111(6 Pt 2):2807–2814. doi: 10.1083/jcb.111.6.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science. 1982 Oct 29;218(4571):474–475. doi: 10.1126/science.7123245. [DOI] [PubMed] [Google Scholar]
  9. Grinnell F. Wound repair, keratinocyte activation and integrin modulation. J Cell Sci. 1992 Jan;101(Pt 1):1–5. doi: 10.1242/jcs.101.1.1. [DOI] [PubMed] [Google Scholar]
  10. Guo L., Yu Q. C., Fuchs E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 1993 Mar;12(3):973–986. doi: 10.1002/j.1460-2075.1993.tb05738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hertle M. D., Kubler M. D., Leigh I. M., Watt F. M. Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J Clin Invest. 1992 Jun;89(6):1892–1901. doi: 10.1172/JCI115794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hollis D. E., Chapman R. E. Apoptosis in wool follicles during mouse epidermal growth factor (mEGF)-induced catagen regression. J Invest Dermatol. 1987 Apr;88(4):455–458. doi: 10.1111/1523-1747.ep12469872. [DOI] [PubMed] [Google Scholar]
  13. Kurokawa I., Mayer-da-Silva A., Gollnick H., Orfanos C. E. Monoclonal antibody labeling for cytokeratins and filaggrin in the human pilosebaceous unit of normal, seborrhoeic and acne skin. J Invest Dermatol. 1988 Dec;91(6):566–571. doi: 10.1111/1523-1747.ep12477026. [DOI] [PubMed] [Google Scholar]
  14. Latham J. A., Redfern C. P., Thody A. J., De Kretser T. A. Immunohistochemical markers of human sebaceous gland differentiation. J Histochem Cytochem. 1989 May;37(5):729–734. doi: 10.1177/37.5.2467930. [DOI] [PubMed] [Google Scholar]
  15. Lenoir M. C., Bernard B. A., Pautrat G., Darmon M., Shroot B. Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro. Dev Biol. 1988 Dec;130(2):610–620. doi: 10.1016/0012-1606(88)90356-9. [DOI] [PubMed] [Google Scholar]
  16. Marchese C., Rubin J., Ron D., Faggioni A., Torrisi M. R., Messina A., Frati L., Aaronson S. A. Human keratinocyte growth factor activity on proliferation and differentiation of human keratinocytes: differentiation response distinguishes KGF from EGF family. J Cell Physiol. 1990 Aug;144(2):326–332. doi: 10.1002/jcp.1041440219. [DOI] [PubMed] [Google Scholar]
  17. Miki T., Bottaro D. P., Fleming T. P., Smith C. L., Burgess W. H., Chan A. M., Aaronson S. A. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):246–250. doi: 10.1073/pnas.89.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moore G. P., Panaretto B. A., Robertson D. Effects of epidermal growth factor on hair growth in the mouse. J Endocrinol. 1981 Feb;88(2):293–299. doi: 10.1677/joe.0.0880293. [DOI] [PubMed] [Google Scholar]
  19. Mustoe T. A., Pierce G. F., Morishima C., Deuel T. F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest. 1991 Feb;87(2):694–703. doi: 10.1172/JCI115048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pierce G. F., Mustoe T. A., Senior R. M., Reed J., Griffin G. L., Thomason A., Deuel T. F. In vivo incisional wound healing augmented by platelet-derived growth factor and recombinant c-sis gene homodimeric proteins. J Exp Med. 1988 Mar 1;167(3):974–987. doi: 10.1084/jem.167.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pierce G. F., Tarpley J. E., Yanagihara D., Mustoe T. A., Fox G. M., Thomason A. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Am J Pathol. 1992 Jun;140(6):1375–1388. [PMC free article] [PubMed] [Google Scholar]
  22. Pierce G. F., Vande Berg J., Rudolph R., Tarpley J., Mustoe T. A. Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds. Am J Pathol. 1991 Mar;138(3):629–646. [PMC free article] [PubMed] [Google Scholar]
  23. Potten C. S., Morris R. J. Epithelial stem cells in vivo. J Cell Sci Suppl. 1988;10:45–62. doi: 10.1242/jcs.1988.supplement_10.4. [DOI] [PubMed] [Google Scholar]
  24. Rubin J. S., Osada H., Finch P. W., Taylor W. G., Rudikoff S., Aaronson S. A. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A. 1989 Feb;86(3):802–806. doi: 10.1073/pnas.86.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Régnier M., Vaigot P., Darmon M., Pruniéras M. Onset of epidermal differentiation in rapidly proliferating basal keratinocytes. J Invest Dermatol. 1986 Oct;87(4):472–476. doi: 10.1111/1523-1747.ep12455517. [DOI] [PubMed] [Google Scholar]
  26. Staiano-Coico L., Krueger J. G., Rubin J. S., D'limi S., Vallat V. P., Valentino L., Fahey T., 3rd, Hawes A., Kingston G., Madden M. R. Human keratinocyte growth factor effects in a porcine model of epidermal wound healing. J Exp Med. 1993 Sep 1;178(3):865–878. doi: 10.1084/jem.178.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tam J. P. Physiological effects of transforming growth factor in the newborn mouse. Science. 1985 Aug 16;229(4714):673–675. doi: 10.1126/science.3860952. [DOI] [PubMed] [Google Scholar]
  28. Vassar R., Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev. 1991 May;5(5):714–727. doi: 10.1101/gad.5.5.714. [DOI] [PubMed] [Google Scholar]
  29. Wenczak B. A., Lynch J. B., Nanney L. B. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair. J Clin Invest. 1992 Dec;90(6):2392–2401. doi: 10.1172/JCI116130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Werner S., Peters K. G., Longaker M. T., Fuller-Pace F., Banda M. J., Williams L. T. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6896–6900. doi: 10.1073/pnas.89.15.6896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilke M. S., Hsu B. M., Wille J. J., Jr, Pittelkow M. R., Scott R. E. Biologic mechanisms for the regulation of normal human keratinocyte proliferation and differentiation. Am J Pathol. 1988 Apr;131(1):171–181. [PMC free article] [PubMed] [Google Scholar]
  32. Yayon A., Zimmer Y., Shen G. H., Avivi A., Yarden Y., Givol D. A confined variable region confers ligand specificity on fibroblast growth factor receptors: implications for the origin of the immunoglobulin fold. EMBO J. 1992 May;11(5):1885–1890. doi: 10.1002/j.1460-2075.1992.tb05240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. du Cros D. L. Fibroblast growth factor influences the development and cycling of murine hair follicles. Dev Biol. 1993 Apr;156(2):444–453. doi: 10.1006/dbio.1993.1091. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES