Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Mar 1;179(3):889–899. doi: 10.1084/jem.179.3.889

Identification of membrane-bound CR1 (CD35) in human urine: evidence for its release by glomerular podocytes

PMCID: PMC2191419  PMID: 8113681

Abstract

Complement receptor 1 (CR1) is present on erythrocytes (E-CR1), various leucocytes, and renal glomerular epithelial cells (podocytes). In addition, plasma contains a soluble form of CR1 (sCR1). By using a specific ELISA, CR1 was detected in the urine (uCR1) of normal individuals (excretion rate in 12 subjects, 3.12 +/- 1.15 micrograms/24 h). Contrary to sCR1, uCR1 was pelleted by centrifugation at 200,000 g for 60 min. Analysis by sucrose density gradient ultracentrifugation showed that uCR1 was sedimenting in fractions larger than 19 S, whereas sCR1 was found as expected in fractions smaller than 19 S. The addition of detergents reduced the apparent size of uCR1 to that of sCR1. After gel filtration on Sephacryl-300 of normal urine, the fractions containing uCR1 were found to be enriched in cholesterol and phospholipids. The membrane-association of uCR1 was demonstrated by analyzing immunoaffinity purified uCR1 by electron microscopy which revealed membrane-bound vesicles. The apparent molecular mass of uCR1 was 15 kD larger than E-CR1 and sCR1 when assessed by SDS-PAGE and immunoblotting. This difference in size could not be explained on the basis of glycosylation only, since pretreatment with N-glycosidase F reduced the size of all forms of CR1; however, the difference in regular molecular mass was not abrogated. The structural alleles described for E-CR1 were also found for uCR1. The urine of patients who had undergone renal transplantation contained alleles of uCR1 which were discordant with E-CR1 in 7 of 11 individuals, indicating that uCR1 originated from the kidney. uCR1 was shown to bind C3b-coated immune complexes, suggesting that the function of CR1 was not destroyed in urine. A decrease in uCR1 excretion was observed in 3 of 10 patients with systemic lupus erythematosus, corresponding to the three who had severe proliferative nephritis, and in three of three patients with focal sclerosis, but not in six other patients with proteinuria. Taken together, these data suggest that glomerular podocytes release CR1- coated vesicles into the urine. The function of this release remains to be defined, but it may be used as a marker for podocyte injury.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appay M. D., Kazatchkine M. D., Levi-Strauss M., Hinglais N., Bariety J. Expression of CR1 (CD35) mRNA in podocytes from adult and fetal human kidneys. Kidney Int. 1990 Aug;38(2):289–293. doi: 10.1038/ki.1990.198. [DOI] [PubMed] [Google Scholar]
  2. Arvidson G., Ronquist G., Wikander G., Ojteg A. C. Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering. Biochim Biophys Acta. 1989 Sep 4;984(2):167–173. doi: 10.1016/0005-2736(89)90212-5. [DOI] [PubMed] [Google Scholar]
  3. Balch W. E., Dunphy W. G., Braell W. A., Rothman J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984 Dec;39(2 Pt 1):405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  4. Brenchley P. E., Coupes B., Short C. D., O'Donoghue D. J., Ballardie F. W., Mallick N. P. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy. Kidney Int. 1992 Apr;41(4):933–937. doi: 10.1038/ki.1992.143. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Bütikofer P., Kuypers F. A., Xu C. M., Chiu D. T., Lubin B. Enrichment of two glycosyl-phosphatidylinositol-anchored proteins, acetylcholinesterase and decay accelerating factor, in vesicles released from human red blood cells. Blood. 1989 Oct;74(5):1481–1485. [PubMed] [Google Scholar]
  8. Campbell A. K., Morgan B. P. Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature. 1985 Sep 12;317(6033):164–166. doi: 10.1038/317164a0. [DOI] [PubMed] [Google Scholar]
  9. Camussi G., Salvidio G., Biesecker G., Brentjens J., Andres G. Heymann antibodies induce complement-dependent injury of rat glomerular visceral epithelial cells. J Immunol. 1987 Nov 1;139(9):2906–2914. [PubMed] [Google Scholar]
  10. Carney D. F., Koski C. L., Shin M. L. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol. 1985 Mar;134(3):1804–1809. [PubMed] [Google Scholar]
  11. Carpentier J. L., Lew D. P., Paccaud J. P., Gil R., Iacopetta B., Kazatchkine M., Stendahl O., Pozzan T. Internalization pathway of C3b receptors in human neutrophils and its transmodulation by chemoattractant receptors stimulation. Cell Regul. 1991 Jan;2(1):41–55. doi: 10.1091/mbc.2.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dovezenski N., Billetta R., Gigli I. Expression and localization of proteins of the complement system in human skin. J Clin Invest. 1992 Nov;90(5):2000–2012. doi: 10.1172/JCI116080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Droz D., Rousseau-Merck M. F., Jaubert F., Diebold N., Nezelof C., Adafer E., Mouly H. Cell differentiation in Wilms' tumor (nephroblastoma): an immunohistochemical study. Hum Pathol. 1990 May;21(5):536–544. doi: 10.1016/0046-8177(90)90011-s. [DOI] [PubMed] [Google Scholar]
  14. Dykman T. R., Hatch J. A., Aqua M. S., Atkinson J. P. Polymorphism of the C3b/C4b receptor (CR1): characterization of a fourth allele. J Immunol. 1985 Mar;134(3):1787–1789. [PubMed] [Google Scholar]
  15. Emancipator S. N., Iida K., Nussenzweig V., Gallo G. R. Monoclonal antibodies to human complement receptor (CR1) detect defects in glomerular diseases. Clin Immunol Immunopathol. 1983 May;27(2):170–175. doi: 10.1016/0090-1229(83)90067-3. [DOI] [PubMed] [Google Scholar]
  16. Fischer E., Appay M. D., Cook J., Kazatchkine M. D. Characterization of the human glomerular C3 receptor as the C3b/C4b complement type one (CR1) receptor. J Immunol. 1986 Feb 15;136(4):1373–1377. [PubMed] [Google Scholar]
  17. Gelfand M. C., Frank M. M., Green I. A receptor for the third component of complement in the human renal glomerulus. J Exp Med. 1975 Oct 1;142(4):1029–1034. doi: 10.1084/jem.142.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gelfand M. C., Shin M. L., Nagle R. B., Green I., Frank M. M. The glomerular complement receptor in immunologically mediated renal glomerular injury. N Engl J Med. 1976 Jul 1;295(1):10–14. doi: 10.1056/NEJM197607012950103. [DOI] [PubMed] [Google Scholar]
  19. Hagelberg C., Allan D. Restricted diffusion of integral membrane proteins and polyphosphoinositides leads to their depletion in microvesicles released from human erythrocytes. Biochem J. 1990 Nov 1;271(3):831–834. doi: 10.1042/bj2710831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iida K., Koyama A., Nakamura H., Inage H., Narita M., Tojyo S., Kamisato J., Fujita T., Tamura N. Abnormal expression of complement receptor (CR1) in IgA nephritis: increase in erythrocytes and loss on glomeruli in patients with impaired renal function. Clin Immunol Immunopathol. 1986 Sep;40(3):393–400. doi: 10.1016/0090-1229(86)90183-2. [DOI] [PubMed] [Google Scholar]
  21. Iida K., Whitlow M. B., Nussenzweig V. Membrane vesiculation protects erythrocytes from destruction by complement. J Immunol. 1991 Oct 15;147(8):2638–2642. [PubMed] [Google Scholar]
  22. James R. W., Pometta D. Differences in lipoprotein subfraction composition and distribution between type I diabetic men and control subjects. Diabetes. 1990 Oct;39(10):1158–1164. doi: 10.2337/diab.39.10.1158. [DOI] [PubMed] [Google Scholar]
  23. Johnstone R. M., Adam M., Hammond J. R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987 Jul 5;262(19):9412–9420. [PubMed] [Google Scholar]
  24. Kazatchkine M. D., Fearon D. T., Appay M. D., Mandet C., Bariety J. Immunohistochemical study of the human glomerular C3b receptor in normal kidney and in seventy-five cases of renal diseases: loss of C3b receptor antigen in focal hyalinosis and in proliferative nephritis of systemic lupus erythematosus. J Clin Invest. 1982 Apr;69(4):900–912. doi: 10.1172/JCI110529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kerjaschki D., Schulze M., Binder S., Kain R., Ojha P. P., Susani M., Horvat R., Baker P. J., Couser W. G. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J Immunol. 1989 Jul 15;143(2):546–552. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lublin D. M., Griffith R. C., Atkinson J. P. Influence of glycosylation on allelic and cell-specific Mr variation, receptor processing, and ligand binding of the human complement C3b/C4b receptor. J Biol Chem. 1986 May 5;261(13):5736–5744. [PubMed] [Google Scholar]
  28. Lutz H. U., Liu S. C., Palek J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J Cell Biol. 1977 Jun;73(3):548–560. doi: 10.1083/jcb.73.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morgan B. P., Daniels R. H., Watts M. J., Williams B. D. In vivo and in vitro evidence of cell recovery from complement attack in rheumatoid synovium. Clin Exp Immunol. 1988 Sep;73(3):467–472. [PMC free article] [PubMed] [Google Scholar]
  30. Nolasco F. E., Cameron J. S., Hartley B., Coelho R. A., Hildredth G., Reuben R. Abnormal podocyte CR-1 expression in glomerular diseases: association with glomerular cell proliferation and monocyte infiltration. Nephrol Dial Transplant. 1987;2(5):304–312. [PubMed] [Google Scholar]
  31. Nolasco F., Hartley B., Reuben R., Welsh K. Glomerular C3b receptor loss in renal allografts. Proc Eur Dial Transplant Assoc Eur Ren Assoc. 1985;21:1015–1020. [PubMed] [Google Scholar]
  32. Ogrodowski J. L., Hebert L. A., Sedmak D., Cosio F. G., Tamerius J., Kolb W. Measurement of SC5b-9 in urine in patients with the nephrotic syndrome. Kidney Int. 1991 Dec;40(6):1141–1147. doi: 10.1038/ki.1991.326. [DOI] [PubMed] [Google Scholar]
  33. Paccaud J. P., Carpentier J. L., Schifferli J. A. Difference in the clustering of complement receptor type 1 (CR1) on polymorphonuclear leukocytes and erythrocytes: effect on immune adherence. Eur J Immunol. 1990 Feb;20(2):283–289. doi: 10.1002/eji.1830200209. [DOI] [PubMed] [Google Scholar]
  34. Paccaud J. P., Carpentier J. L., Schifferli J. A. Direct evidence for the clustered nature of complement receptors type 1 on the erythrocyte membrane. J Immunol. 1988 Dec 1;141(11):3889–3894. [PubMed] [Google Scholar]
  35. Paccaud J. P., Steiger G., Schifferli J. A. Reduced immune adherence of antigen/antibody complexes formed in the presence of complement in vivo and in vitro. Complement Inflamm. 1989;6(6):470–479. doi: 10.1159/000463116. [DOI] [PubMed] [Google Scholar]
  36. Pascual M., Catana E., Spertini F., Macon K., Volanakis J. E., Schifferli J. A. A monoclonal antibody which blocks the function of factor D of human complement. J Immunol Methods. 1990 Mar 9;127(2):263–269. doi: 10.1016/0022-1759(90)90077-9. [DOI] [PubMed] [Google Scholar]
  37. Pascual M., Duchosal M. A., Steiger G., Giostra E., Pechère A., Paccaud J. P., Danielsson C., Schifferli J. A. Circulating soluble CR1 (CD35). Serum levels in diseases and evidence for its release by human leukocytes. J Immunol. 1993 Aug 1;151(3):1702–1711. [PubMed] [Google Scholar]
  38. Pascual M., Lutz H. U., Steiger G., Stammler P., Schifferli J. A. Release of vesicles enriched in complement receptor 1 from human erythrocytes. J Immunol. 1993 Jul 1;151(1):397–404. [PubMed] [Google Scholar]
  39. Quadri R. A., Schifferli J. A. Over-estimation of the number of complement receptor type 1 (CR1) on erythrocytes. Scand J Immunol. 1992 Jul;36(1):125–130. doi: 10.1111/j.1365-3083.1992.tb02948.x. [DOI] [PubMed] [Google Scholar]
  40. Ronquist G., Brody I. The prostasome: its secretion and function in man. Biochim Biophys Acta. 1985 Sep 9;822(2):203–218. doi: 10.1016/0304-4157(85)90008-5. [DOI] [PubMed] [Google Scholar]
  41. Rooney I. A., Atkinson J. P., Krul E. S., Schonfeld G., Polakoski K., Saffitz J. E., Morgan B. P. Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J Exp Med. 1993 May 1;177(5):1409–1420. doi: 10.1084/jem.177.5.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Scolding N. J., Morgan B. P., Houston W. A., Linington C., Campbell A. K., Compston D. A. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature. 1989 Jun 22;339(6226):620–622. doi: 10.1038/339620a0. [DOI] [PubMed] [Google Scholar]
  43. Sims P. J., Wiedmer T. Repolarization of the membrane potential of blood platelets after complement damage: evidence for a Ca++ -dependent exocytotic elimination of C5b-9 pores. Blood. 1986 Aug;68(2):556–561. [PubMed] [Google Scholar]
  44. Van Dyne S., Holers V. M., Lublin D. M., Atkinson J. P. The polymorphism of the C3b/C4b receptor in the normal population and in patients with systemic lupus erythematosus. Clin Exp Immunol. 1987 Jun;68(3):570–579. [PMC free article] [PubMed] [Google Scholar]
  45. Wong W. W., Cahill J. M., Rosen M. D., Kennedy C. A., Bonaccio E. T., Morris M. J., Wilson J. G., Klickstein L. B., Fearon D. T. Structure of the human CR1 gene. Molecular basis of the structural and quantitative polymorphisms and identification of a new CR1-like allele. J Exp Med. 1989 Mar 1;169(3):847–863. doi: 10.1084/jem.169.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wong W. W., Wilson J. G., Fearon D. T. Genetic regulation of a structural polymorphism of human C3b receptor. J Clin Invest. 1983 Aug;72(2):685–693. doi: 10.1172/JCI111018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yoon S. H., Fearon D. T. Characterization of a soluble form of the C3b/C4b receptor (CR1) in human plasma. J Immunol. 1985 May;134(5):3332–3338. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES