Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Apr 1;179(4):1385–1390. doi: 10.1084/jem.179.4.1385

CDw60: a marker for human CD8+ T helper cells

PMCID: PMC2191442  PMID: 8145051

Abstract

The existence of helper cells among the CD8+ T cell subset has been recognized for a long time. However, the phenotype of these cells has remained elusive. In this study, we provide evidence that the expression of the CDw60 antigen on human CD8+ T cell allows one to distinguish between CD8+ T helper cells and CD8+ T cells with cytotoxic and suppressor capacity. CDw60 monoclonal antibodies (mAb) recognize the 9-O-acetylated disialosyl group on ganglioside GD3 expressed on 20- 40% of CD8+ cells. By use of the direct and indirect mAb-rosetting technique, we were able to isolate the CDw60+CD8+ and CDw60-CD8+ cells at high purity. The alloantigen-specific cytotoxic activity of CD8+ cells resided entirely in the CDw60- population. Helper and suppressor capacity of both CD8 subsets was assayed by the pokeweed mitogen- induced differentiation of B cells into immunoglobulin-secreting cells. These studies clearly indicate that the CDw60+CD8+ subset provided substantial help to B lymphocytes, whereas the CD8+ cells with the CDw60- phenotype were suppressing B cell differentiation. Both subsets produced similar amounts of interleukin 2 (IL-2) after stimulation with phytohemagglutinin. Activation with phorbol myristate acetate in combination with Ca-ionophore induced IL-4 secretion in both populations, but preferentially in the CDw60+ subset, whereas the vast majority of interferon gamma was produced by the CDw60-CD8+ cells. When used in combination with other markers, CDw60 may prove to be useful in defining CD8+ subsets with reciprocal functional activities.

Full Text

The Full Text of this article is available as a PDF (589.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cardell S., Sander B., Möller G. Helper interleukins are produced by both CD4 and CD8 splenic T cells after mitogen stimulation. Eur J Immunol. 1991 Oct;21(10):2495–2500. doi: 10.1002/eji.1830211028. [DOI] [PubMed] [Google Scholar]
  2. Cheresh D. A., Varki A. P., Varki N. M., Stallcup W. B., Levine J., Reisfeld R. A. A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem. 1984 Jun 25;259(12):7453–7459. [PubMed] [Google Scholar]
  3. Clement L. T., Grossi C. E., Gartland G. L. Morphologic and phenotypic features of the subpopulation of Leu-2+ cells that suppresses B cell differentiation. J Immunol. 1984 Nov;133(5):2461–2468. [PubMed] [Google Scholar]
  4. Damle N. K., Mohagheghpour N., Engleman E. G. Soluble antigen-primed inducer T cells activate antigen-specific suppressor T cells in the absence of antigen-pulsed accessory cells: phenotypic definition of suppressor-inducer and suppressor-effector cells. J Immunol. 1984 Feb;132(2):644–650. [PubMed] [Google Scholar]
  5. Ebel F., Schmitt E., Peter-Katalinić J., Kniep B., Mühlradt P. F. Gangliosides: differentiation markers for murine T helper lymphocyte subpopulations TH1 and TH2. Biochemistry. 1992 Dec 8;31(48):12190–12197. doi: 10.1021/bi00163a031. [DOI] [PubMed] [Google Scholar]
  6. Fox D. A., Chan L. S., Kan L., Baadsgaard O., Cooper K. D. Expression and function of the UM4D4 antigen in human thymus. J Immunol. 1989 Oct 1;143(7):2166–2175. [PubMed] [Google Scholar]
  7. Fox D. A., Davis W., Zeldes W., Kan L., Higgs J., Duby A. D., Holoshitz J. Activation of human T cell clones through the UM4D4/CDw60 surface antigen. Cell Immunol. 1990 Jul;128(2):480–489. doi: 10.1016/0008-8749(90)90042-p. [DOI] [PubMed] [Google Scholar]
  8. Fox D. A., Millard J. A., Kan L., Zeldes W. S., Davis W., Higgs J., Emmrich F., Kinne R. W. Activation pathways of synovial T lymphocytes. Expression and function of the UM4D4/CDw60 antigen. J Clin Invest. 1990 Oct;86(4):1124–1136. doi: 10.1172/JCI114817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansen E. R., Vejlsgaard G. L., Cooper K. D., Heidenheim M., Larsen J. K., Ho V. C., Ross C. W., Fox D. A., Thomsen K., Baadsgaard O. Leukemic T cells from patients with cutaneous T-cell lymphoma demonstrate enhanced activation through CDw60, CD2, and CD28 relative to activation through the T-cell antigen receptor complex. J Invest Dermatol. 1993 May;100(5):667–673. doi: 10.1111/1523-1747.ep12472333. [DOI] [PubMed] [Google Scholar]
  10. Holter W., Majdic O., Kalthoff F. S., Knapp W. Regulation of interleukin-4 production in human mononuclear cells. Eur J Immunol. 1992 Oct;22(10):2765–2767. doi: 10.1002/eji.1830221047. [DOI] [PubMed] [Google Scholar]
  11. Horvat B., Loukides J. A., Anandan L., Brewer E., Flood P. M. Production of interleukin 2 and interleukin 4 by immune CD4-CD8+ and their role in the generation of antigen-specific cytotoxic T cells. Eur J Immunol. 1991 Aug;21(8):1863–1871. doi: 10.1002/eji.1830210813. [DOI] [PubMed] [Google Scholar]
  12. Kniep B., Flegel W. A., Northoff H., Rieber E. P. CDw60 glycolipid antigens of human leukocytes: structural characterization and cellular distribution. Blood. 1993 Sep 15;82(6):1776–1786. [PubMed] [Google Scholar]
  13. Kniep B., Peter-Katalinić J., Flegel W., Northoff H., Rieber E. P. CDw 60 antibodies bind to acetylated forms of ganglioside GD3. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1343–1349. doi: 10.1016/0006-291x(92)90450-y. [DOI] [PubMed] [Google Scholar]
  14. Paliard X., de Waal Malefijt R., Yssel H., Blanchard D., Chrétien I., Abrams J., de Vries J., Spits H. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol. 1988 Aug 1;141(3):849–855. [PubMed] [Google Scholar]
  15. Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody reactive with the human cytotoxic/suppressor T cell subset previously defined by a heteroantiserum termed TH2. J Immunol. 1980 Mar;124(3):1301–1307. [PubMed] [Google Scholar]
  16. Rieber P., Lohmeyer J., Schendel D. J., Riethmüller G. Human T cell differentiation antigens characterizing a cytotoxic/suppressor T cell subset. Hybridoma. 1981;1(1):59–69. doi: 10.1089/hyb.1.1981.1.59. [DOI] [PubMed] [Google Scholar]
  17. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  18. Schendel D. J., Wank R., Bonnard G. D. Genetic specificity of primary and secondary proliferative and cytotoxic responses of human lymphocytes grown in continued culture. Scand J Immunol. 1980;11(1):99–107. doi: 10.1111/j.1365-3083.1980.tb00214.x. [DOI] [PubMed] [Google Scholar]
  19. Seder R. A., Boulay J. L., Finkelman F., Barbier S., Ben-Sasson S. Z., Le Gros G., Paul W. E. CD8+ T cells can be primed in vitro to produce IL-4. J Immunol. 1992 Mar 15;148(6):1652–1656. [PubMed] [Google Scholar]
  20. Swain S. L. Significance of Lyt phenotypes: Lyt2 antibodies block activities of T cells that recognize class 1 major histocompatibility complex antigens regardless of their function. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7101–7105. doi: 10.1073/pnas.78.11.7101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wilhelm M., Pechumer H., Rank G., Kopp E., Riethmüller G., Rieber E. P. Direct monoclonal antibody rosetting. An effective method for weak antigen detection and large scale separation of human mononuclear cells. J Immunol Methods. 1986 Jun 10;90(1):89–96. doi: 10.1016/0022-1759(86)90388-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES