Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Apr 1;179(4):1155–1161. doi: 10.1084/jem.179.4.1155

An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease

PMCID: PMC2191444  PMID: 7511682

Abstract

The phenomenon of T cell allorecognition is difficult to accommodate within the framework of a T cell repertoire positively selected in the thymus, unless allorecognition results from the cross-reactions of self- major histocompatibility complex restricted T cells. Herein, we demonstrate the dual specificity of cytotoxic T lymphocyte (CTL) clones for the immunodominant Epstein-Barr virus (EBV) epitope FLRGRAYGL, presented on HLA-B8, and the alloantigen HLA-B*4402. CTL which recognized peptide FLRGRAYGL in association with HLA-B8 could be reactivated in vitro from healthy individuals who had been exposed previously to EBV, using stimulator cells expressing the cross-reacting alloantigen HLA-B*4402. Limiting dilution analysis of the alloresponse to HLA-B*4402 in eight healthy individuals revealed that HLA-B8+, EBV- sero+ donors had higher CTL precursor frequencies for alloantigen HLA- B*4402 than EBV-sero- control donors. It is surprising that the majority (65-100%) of anti-HLA-B*4402 CTL, generated in limiting dilution mixed lymphocyte reactions between responder cells from HLA- B8+, EBV-sero+ individuals and HLA-B*4402+ stimulators, also recognized the EBV CTL epitope FLRGRAYGL/HLA-B8. In contrast to previous studies showing extensive diversity in the T cell repertoire against individual alloantigens, these data demonstrate that the response to an alloantigen can be dominated by CTL cross-reactive with a single viral epitope, thus illustrating a possible mechanism for the frequent clinical association between herpesvirus exposure and graft-versus-host disease after bone marrow transplants.

Full Text

The Full Text of this article is available as a PDF (681.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleton A. L., Sviland L. Pathogenesis of GVHD: role of herpes viruses. Bone Marrow Transplant. 1993 May;11(5):349–355. [PubMed] [Google Scholar]
  2. Ashwell J. D., Chen C., Schwartz R. H. High frequency and nonrandom distribution of alloreactivity in T cell clones selected for recognition of foreign antigen in association with self class II molecules. J Immunol. 1986 Jan;136(2):389–395. [PubMed] [Google Scholar]
  3. Bill J., Yagüe J., Appel V. B., White J., Horn G., Erlich H. A., Palmer E. Molecular genetic analysis of 178 I-Abm12-reactive T cells. J Exp Med. 1989 Jan 1;169(1):115–133. doi: 10.1084/jem.169.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borysiewicz L. K., Graham S., Hickling J. K., Mason P. D., Sissons J. G. Human cytomegalovirus-specific cytotoxic T cells: their precursor frequency and stage specificity. Eur J Immunol. 1988 Feb;18(2):269–275. doi: 10.1002/eji.1830180214. [DOI] [PubMed] [Google Scholar]
  5. Borysiewicz L. K., Morris S., Page J. D., Sissons J. G. Human cytomegalovirus-specific cytotoxic T lymphocytes: requirements for in vitro generation and specificity. Eur J Immunol. 1983 Oct;13(10):804–809. doi: 10.1002/eji.1830131005. [DOI] [PubMed] [Google Scholar]
  6. Bourgault I., Gomez A., Gomard E., Levy J. P. Limiting-dilution analysis of the HLA restriction of anti-Epstein-Barr virus-specific cytolytic T lymphocytes. Clin Exp Immunol. 1991 Jun;84(3):501–507. [PMC free article] [PubMed] [Google Scholar]
  7. Burrows S. R., Rodda S. J., Suhrbier A., Geysen H. M., Moss D. J. The specificity of recognition of a cytotoxic T lymphocyte epitope. Eur J Immunol. 1992 Jan;22(1):191–195. doi: 10.1002/eji.1830220128. [DOI] [PubMed] [Google Scholar]
  8. Fleischhauer K., Kernan N. A., Dupont B., Yang S. Y. The two major subtypes of HLA-B44 differ for a single amino acid in codon 156. Tissue Antigens. 1991 Mar;37(3):133–137. doi: 10.1111/j.1399-0039.1991.tb01859.x. [DOI] [PubMed] [Google Scholar]
  9. Garman R. D., Ko J. L., Vulpe C. D., Raulet D. H. T-cell receptor variable region gene usage in T-cell populations. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3987–3991. doi: 10.1073/pnas.83.11.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaston J. S., Rickinson A. B., Epstein M. A. Cross-reactivity of self-HLA-restricted Epstein-Barr virus-specific cytotoxic T lymphocytes for allo-HLA determinants. J Exp Med. 1983 Dec 1;158(6):1804–1821. doi: 10.1084/jem.158.6.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henle G., Henle W. Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol. 1966 Mar;91(3):1248–1256. doi: 10.1128/jb.91.3.1248-1256.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffenbach A., Langlade-Demoyen P., Dadaglio G., Vilmer E., Michel F., Mayaud C., Autran B., Plata F. Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. J Immunol. 1989 Jan 15;142(2):452–462. [PubMed] [Google Scholar]
  13. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lauzurica P., Bragado R., López D., Galocha B., López de Castro J. A. Asymmetric selection of T cell antigen receptor alpha- and beta-chains in HLA-B27 alloreactivity. J Immunol. 1992 Jun 1;148(11):3624–3630. [PubMed] [Google Scholar]
  15. Lechler R., Batchelor R., Lombardi G. The relationship between MHC restricted and allospecific T cell recognition. Immunol Lett. 1991 Jul;29(1-2):41–50. doi: 10.1016/0165-2478(91)90197-i. [DOI] [PubMed] [Google Scholar]
  16. Lombardi G., Sidhu S., Daly M., Batchelor J. R., Makgoba W., Lechler R. I. Are primary alloresponses truly primary? Int Immunol. 1990;2(1):9–13. doi: 10.1093/intimm/2.1.9. [DOI] [PubMed] [Google Scholar]
  17. Matzinger P., Bevan M. J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol. 1977 Mar 1;29(1):1–5. doi: 10.1016/0008-8749(77)90269-6. [DOI] [PubMed] [Google Scholar]
  18. Merkenschlager M., Beverley P. C. Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic responses: human CD8 memory CTLp selectively express CD45RO (UCHL1). Int Immunol. 1989;1(4):450–459. doi: 10.1093/intimm/1.4.450. [DOI] [PubMed] [Google Scholar]
  19. Misko I. S., Pope J. H., Hütter R., Soszynski T. D., Kane R. G. HLA-DR-antigen-associated restriction of EBV-specific cytotoxic T-cell colonies. Int J Cancer. 1984 Feb 15;33(2):239–243. doi: 10.1002/ijc.2910330212. [DOI] [PubMed] [Google Scholar]
  20. Moss D. J., Burrows S. R., Khanna R., Misko I. S., Sculley T. B. Immune surveillance against Epstein-Barr virus. Semin Immunol. 1992 Apr;4(2):97–104. [PubMed] [Google Scholar]
  21. Moss D. J., Misko I. S., Burrows S. R., Burman K., McCarthy R., Sculley T. B. Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature. 1988 Feb 25;331(6158):719–721. doi: 10.1038/331719a0. [DOI] [PubMed] [Google Scholar]
  22. Parham P., Lomen C. E., Lawlor D. A., Ways J. P., Holmes N., Coppin H. L., Salter R. D., Wan A. M., Ennis P. D. Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4005–4009. doi: 10.1073/pnas.85.11.4005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rickinson A. B., Moss D. J., Wallace L. E., Rowe M., Misko I. S., Epstein M. A., Pope J. H. Long-term T-cell-mediated immunity to Epstein-Barr virus. Cancer Res. 1981 Nov;41(11 Pt 1):4216–4221. [PubMed] [Google Scholar]
  24. Rosenberg S. A., Grimm E. A., McGrogan M., Doyle M., Kawasaki E., Koths K., Mark D. F. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science. 1984 Mar 30;223(4643):1412–1414. doi: 10.1126/science.6367046. [DOI] [PubMed] [Google Scholar]
  25. Schendel D. J., Reinhardt C., Nelson P. J., Maget B., Pullen L., Bornkamm G. W., Steinle A. Cytotoxic T lymphocytes show HLA-C-restricted recognition of EBV-bearing cells and allorecognition of HLA class I molecules presenting self-peptides. J Immunol. 1992 Oct 1;149(7):2406–2414. [PubMed] [Google Scholar]
  26. Schmidt C., Burrows S. R., Sculley T. B., Moss D. J., Misko I. S. Nonresponsiveness to an immunodominant Epstein-Barr virus-encoded cytotoxic T-lymphocyte epitope in nuclear antigen 3A: implications for vaccine strategies. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9478–9482. doi: 10.1073/pnas.88.21.9478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharrock C. E., Kaminski E., Man S. Limiting dilution analysis of human T cells: a useful clinical tool. Immunol Today. 1990 Aug;11(8):281–286. doi: 10.1016/0167-5699(90)90113-n. [DOI] [PubMed] [Google Scholar]
  28. Sherman L. A., Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol. 1993;11:385–402. doi: 10.1146/annurev.iy.11.040193.002125. [DOI] [PubMed] [Google Scholar]
  29. Sherman L. A. Dissection of the B10.D2 anti-H-2Kb cytolytic T lymphocyte receptor repertoire. J Exp Med. 1980 Jun 1;151(6):1386–1397. doi: 10.1084/jem.151.6.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang A., Lu S. D., Mark D. F. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science. 1984 Jun 29;224(4656):1431–1433. doi: 10.1126/science.6427925. [DOI] [PubMed] [Google Scholar]
  31. Zhang L., Li S. G., Vandekerckhove B., Termijtelen A., Van Rood J. J., Claas F. H. Analysis of cytotoxic T cell precursor frequencies directed against individual HLA-A and -B alloantigens. J Immunol Methods. 1989 Jul 6;121(1):39–45. doi: 10.1016/0022-1759(89)90417-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES