Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Apr 1;179(4):1349–1353. doi: 10.1084/jem.179.4.1349

Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells

PMCID: PMC2191446  PMID: 8145047

Abstract

Interleukin 4 (IL-4) is essential for the induction of immunoglobulin E (IgE) responses in mice. Recent in vitro studies have suggested that IL- 4 derived from non T helper (Th) cells, in particular from mast cells and basophils, may be essential for triggering of IL-4 expression in Th cells and may directly contribute to IgE isotype switch induction. Here, we have generated mice carrying a functional IL-4 gene only in Th cells or non-Th cells, respectively, by reconstitution of IL-4- deficient mice (IL-4T mice) with CD4+ or CD4- spleen cells from congenic wild-type animals. In mice in which only CD4+ cells are able to express IL-4, antigen-specific IgE is produced in a T cell-dependent immune response. Thus, induction of IL-4 expression in Th cells can occur in the absence of IL-4 from non-Th cells, which suggests that at least some Th cells can express IL-4 in response to another signal which has yet to be identified. No IgE is detectable, however, in mice in which only CD4- cells can express IL-4, suggesting that Th cells are the primary, if not the only source of IL-4 for initial induction of IgE synthesis.

Full Text

The Full Text of this article is available as a PDF (517.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baniyash M., Eshhar Z. Inhibition of IgE binding to mast cells and basophils by monoclonal antibodies to murine IgE. Eur J Immunol. 1984 Sep;14(9):799–807. doi: 10.1002/eji.1830140907. [DOI] [PubMed] [Google Scholar]
  2. Bradding P., Feather I. H., Howarth P. H., Mueller R., Roberts J. A., Britten K., Bews J. P., Hunt T. C., Okayama Y., Heusser C. H. Interleukin 4 is localized to and released by human mast cells. J Exp Med. 1992 Nov 1;176(5):1381–1386. doi: 10.1084/jem.176.5.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunner T., Heusser C. H., Dahinden C. A. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J Exp Med. 1993 Mar 1;177(3):605–611. doi: 10.1084/jem.177.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cardell S., Sander B., Möller G. Primary stimulation of CD4+ cells in the presence of IL-4 or IFN-gamma alters the frequencies of cytokine-producing cells at restimulation. Scand J Immunol. 1992 Dec;36(6):769–777. doi: 10.1111/j.1365-3083.1992.tb03138.x. [DOI] [PubMed] [Google Scholar]
  5. Chatelain R., Varkila K., Coffman R. L. IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol. 1992 Feb 15;148(4):1182–1187. [PubMed] [Google Scholar]
  6. Cumano A., Rajewsky K. Structure of primary anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies in normal and idiotypically suppressed C57BL/6 mice. Eur J Immunol. 1985 May;15(5):512–520. doi: 10.1002/eji.1830150517. [DOI] [PubMed] [Google Scholar]
  7. Dialynas D. P., Wilde D. B., Marrack P., Pierres A., Wall K. A., Havran W., Otten G., Loken M. R., Pierres M., Kappler J. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev. 1983;74:29–56. doi: 10.1111/j.1600-065x.1983.tb01083.x. [DOI] [PubMed] [Google Scholar]
  8. Doherty T. M., Coffman R. L. Leishmania antigens presented by GM-CSF-derived macrophages protect susceptible mice against challenge with Leishmania major. J Immunol. 1993 Jun 15;150(12):5476–5483. [PubMed] [Google Scholar]
  9. Erard F., Wild M. T., Garcia-Sanz J. A., Le Gros G. Switch of CD8 T cells to noncytolytic CD8-CD4- cells that make TH2 cytokines and help B cells. Science. 1993 Jun 18;260(5115):1802–1805. doi: 10.1126/science.8511588. [DOI] [PubMed] [Google Scholar]
  10. Gross A., Ben-Sasson S. Z., Paul W. E. Anti-IL-4 diminishes in vivo priming for antigen-specific IL-4 production by T cells. J Immunol. 1993 Mar 15;150(6):2112–2120. [PubMed] [Google Scholar]
  11. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  12. Kühn R., Rajewsky K., Müller W. Generation and analysis of interleukin-4 deficient mice. Science. 1991 Nov 1;254(5032):707–710. doi: 10.1126/science.1948049. [DOI] [PubMed] [Google Scholar]
  13. Le Gros G., Ben-Sasson S. Z., Seder R., Finkelman F. D., Paul W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990 Sep 1;172(3):921–929. doi: 10.1084/jem.172.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee W. T., Vitetta E. S. Limiting dilution analysis of CD45Rhi and CD45Rlo T cells: further evidence that CD45Rlo cells are memory cells. Cell Immunol. 1990 Oct 15;130(2):459–471. doi: 10.1016/0008-8749(90)90287-2. [DOI] [PubMed] [Google Scholar]
  15. Miltenyi S., Müller W., Weichel W., Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11(2):231–238. doi: 10.1002/cyto.990110203. [DOI] [PubMed] [Google Scholar]
  16. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  17. Nossal G. J., Pike B. L., Battye F. L. Sequential use of hapten-gelatin fractionation and fluorescence-activated cell sorting in the enrichment of hapten-specific B llymphocytes. Eur J Immunol. 1978 Mar;8(3):151–157. doi: 10.1002/eji.1830080302. [DOI] [PubMed] [Google Scholar]
  18. O'Garra A., Barbis D., Harada N., Lee F., Howard M. Constitutive production of lymphokines by cloned murine B-cell lymphomas--CH12 B lymphoma produces interleukin-4. J Mol Cell Immunol. 1989;4(3):149–159. [PubMed] [Google Scholar]
  19. Paul W. E., Seder R. A., Plaut M. Lymphokine and cytokine production by Fc epsilon RI+ cells. Adv Immunol. 1993;53:1–29. [PubMed] [Google Scholar]
  20. Romagnani S. Induction of TH1 and TH2 responses: a key role for the 'natural' immune response? Immunol Today. 1992 Oct;13(10):379–381. doi: 10.1016/0167-5699(92)90083-J. [DOI] [PubMed] [Google Scholar]
  21. Schmitz J., Assenmacher M., Radbruch A. Regulation of T helper cell cytokine expression: functional dichotomy of antigen-presenting cells. Eur J Immunol. 1993 Jan;23(1):191–199. doi: 10.1002/eji.1830230130. [DOI] [PubMed] [Google Scholar]
  22. Schmitz J., Radbruch A. Distinct antigen presenting cell-derived signals induce TH cell proliferation and expression of effector cytokines. Int Immunol. 1992 Jan;4(1):43–51. doi: 10.1093/intimm/4.1.43. [DOI] [PubMed] [Google Scholar]
  23. Scott P. Selective differentiation of CD4+ T helper cell subsets. Curr Opin Immunol. 1993 Jun;5(3):391–397. doi: 10.1016/0952-7915(93)90058-z. [DOI] [PubMed] [Google Scholar]
  24. Seder R. A., Boulay J. L., Finkelman F., Barbier S., Ben-Sasson S. Z., Le Gros G., Paul W. E. CD8+ T cells can be primed in vitro to produce IL-4. J Immunol. 1992 Mar 15;148(6):1652–1656. [PubMed] [Google Scholar]
  25. Seder R. A., Paul W. E., Dvorak A. M., Sharkis S. J., Kagey-Sobotka A., Niv Y., Finkelman F. D., Barbieri S. A., Galli S. J., Plaut M. Mouse splenic and bone marrow cell populations that express high-affinity Fc epsilon receptors and produce interleukin 4 are highly enriched in basophils. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2835–2839. doi: 10.1073/pnas.88.7.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seder R. A., Plaut M., Barbieri S., Urban J., Jr, Finkelman F. D., Paul W. E. Purified Fc epsilon R+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin. J Immunol. 1991 Aug 1;147(3):903–909. [PubMed] [Google Scholar]
  27. Swain S. L., Weinberg A. D., English M., Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 1990 Dec 1;145(11):3796–3806. [PubMed] [Google Scholar]
  28. Williams M. E., Kullberg M. C., Barbieri S., Caspar P., Berzofsky J. A., Seder R. A., Sher A. Fc epsilon receptor-positive cells are a major source of antigen-induced interleukin-4 in spleens of mice infected with Schistosoma mansoni. Eur J Immunol. 1993 Aug;23(8):1910–1916. doi: 10.1002/eji.1830230827. [DOI] [PubMed] [Google Scholar]
  29. Zhang L., Mohapatra S. S. Antigen- and isotype-specific immune responses to a recombinant antigen-allergen chimeric (RAAC) protein. J Immunol. 1993 Jul 15;151(2):791–799. [PubMed] [Google Scholar]
  30. Zlotnik A., Godfrey D. I., Fischer M., Suda T. Cytokine production by mature and immature CD4-CD8- T cells. Alpha beta-T cell receptor+ CD4-CD8- T cells produce IL-4. J Immunol. 1992 Aug 15;149(4):1211–1215. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES