Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 May 1;179(5):1713–1717. doi: 10.1084/jem.179.5.1713

Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus

PMCID: PMC2191473  PMID: 8163949

Abstract

Virus shedding from the epithelial cells of the serous acini of salivary glands is a major source for the horizontal transmission of cytomegalovirus. These cells are, different to other tissues, exempt from CD8 T lymphocyte control. CD4 T lymphocytes are essential to terminate the productive infection. Here, we prove that T-B cooperation and the production of antibodies are not required for this process. For the infection with murine cytomegalovirus, mutant mice were used which do not produce antibodies because of a disrupted membrane exon of the immunoglobulin mu chain gene. Also, in these mice the virus clearance from salivary glands is a function of CD4 T lymphocytes. However, these mice clear the virus and establish viral latency with a kinetics that is distinguishable from normal mice. Reactivation from virus latency is the only stage at which the absence of antibodies alters the phenotype of infection. In immunoglobulin-deficient mice, virus recurrence results in higher virus titers. The adoptive serum transfer proved that antibody is the limited factor that prevents virus dissemination in the immunodeficient host.

Full Text

The Full Text of this article is available as a PDF (566.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balthesen M., Messerle M., Reddehase M. J. Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol. 1993 Sep;67(9):5360–5366. doi: 10.1128/jvi.67.9.5360-5366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature. 1984 Dec 6;312(5994):548–551. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  3. Farrell H. E., Shellam G. R. Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J Gen Virol. 1991 Jan;72(Pt 1):149–156. doi: 10.1099/0022-1317-72-1-149. [DOI] [PubMed] [Google Scholar]
  4. Jonjić S., Mutter W., Weiland F., Reddehase M. J., Koszinowski U. H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med. 1989 Apr 1;169(4):1199–1212. doi: 10.1084/jem.169.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jonjić S., Pavić I., Lucin P., Rukavina D., Koszinowski U. H. Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol. 1990 Nov;64(11):5457–5464. doi: 10.1128/jvi.64.11.5457-5464.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jonjić S., del Val M., Keil G. M., Reddehase M. J., Koszinowski U. H. A nonstructural viral protein expressed by a recombinant vaccinia virus protects against lethal cytomegalovirus infection. J Virol. 1988 May;62(5):1653–1658. doi: 10.1128/jvi.62.5.1653-1658.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kitamura D., Roes J., Kühn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991 Apr 4;350(6317):423–426. doi: 10.1038/350423a0. [DOI] [PubMed] [Google Scholar]
  8. Klein-Schneegans A. S., Gavériaux C., Fonteneau P., Loor F. Indirect double sandwich ELISA for the specific and quantitative measurement of mouse IgM, IgA and IgG subclasses. J Immunol Methods. 1989 Apr 21;119(1):117–125. doi: 10.1016/0022-1759(89)90388-8. [DOI] [PubMed] [Google Scholar]
  9. Koo G. C., Dumont F. J., Tutt M., Hackett J., Jr, Kumar V. The NK-1.1(-) mouse: a model to study differentiation of murine NK cells. J Immunol. 1986 Dec 15;137(12):3742–3747. [PubMed] [Google Scholar]
  10. Koszinowski U. H., Del Val M., Reddehase M. J. Cellular and molecular basis of the protective immune response to cytomegalovirus infection. Curr Top Microbiol Immunol. 1990;154:189–220. doi: 10.1007/978-3-642-74980-3_8. [DOI] [PubMed] [Google Scholar]
  11. Pavić I., Polić B., Crnković I., Lucin P., Jonjić S., Koszinowski U. H. Participation of endogenous tumour necrosis factor alpha in host resistance to cytomegalovirus infection. J Gen Virol. 1993 Oct;74(Pt 10):2215–2223. doi: 10.1099/0022-1317-74-10-2215. [DOI] [PubMed] [Google Scholar]
  12. Rasmussen L. Immune response to human cytomegalovirus infection. Curr Top Microbiol Immunol. 1990;154:221–254. doi: 10.1007/978-3-642-74980-3_9. [DOI] [PubMed] [Google Scholar]
  13. Reddehase M. J., Balthesen M., Rapp M., Jonjić S., Pavić I., Koszinowski U. H. The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med. 1994 Jan 1;179(1):185–193. doi: 10.1084/jem.179.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reddehase M. J., Jonjić S., Weiland F., Mutter W., Koszinowski U. H. Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol. 1988 Mar;62(3):1061–1065. doi: 10.1128/jvi.62.3.1061-1065.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reddehase M. J., Mutter W., Koszinowski U. H. In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med. 1987 Mar 1;165(3):650–656. doi: 10.1084/jem.165.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reddehase M. J., Mutter W., Münch K., Bühring H. J., Koszinowski U. H. CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol. 1987 Oct;61(10):3102–3108. doi: 10.1128/jvi.61.10.3102-3108.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reddehase M. J., Weiland F., Münch K., Jonjic S., Lüske A., Koszinowski U. H. Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol. 1985 Aug;55(2):264–273. doi: 10.1128/jvi.55.2.264-273.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Riddell S. R., Watanabe K. S., Goodrich J. M., Li C. R., Agha M. E., Greenberg P. D. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992 Jul 10;257(5067):238–241. doi: 10.1126/science.1352912. [DOI] [PubMed] [Google Scholar]
  19. Shanley J. D., Jordan M. C., Stevens J. G. Modification by adoptive humoral immunity of murine cytomegalovirus infection. J Infect Dis. 1981 Feb;143(2):231–237. doi: 10.1093/infdis/143.2.231. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES